ADDITIVITY FOR BEGINNERS

ULI

Abstract. I recall parts of Florian’s talk since a month
has passed. Then I explain how operads become graded
Lie algebras and operads with multiplication become
Gerstenhaber algebras up to homotopy (which is an early

instance of the m = n = 1 case of the additivity theorem).
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1. Operads with multiplication

In this first section I recall and generalise various defi-
nitions introduced by Florian last time. Afterwards I define
operads with multiplication, which is new material.

1.1. Categorical setup. Our aim is to study a specified type
of algebraic structure, say a Lie algebra. This is an object X
of some category & plus the algebraic structure on it, and
the latter is given by the action of an operad. The operad
itself is a functor O: N¥°? — € whose domain N contains the
“symmetries” used to describe the algebraic structure, while
its values O(n) are the “spaces of operations” that consti-
tute the algebraic structure itself, so € determines whether
“space” means vector space, topological space, or something
else. In many examples, € arises itself as a functor category
[£,%B] where & is some cosmos one works in, and Z is some
index category (e.g. % vector spaces, 6 chain complexes).

category role of objects
D carrier X of an O-algebra structure
N arity (shape of input) of an operation in O
6 space O(n) of all n-ary operations in O
R anything that exists in our cosmos
Z degree ||@|| of an operation ¢ € O(n)

1.1.1. The category €. We make:

Assumption 1.1.1.1. Throughout this text, (6,®,1,3) is a
self-enriched symmetric monoidal category.

Example 1.1.1.2. We usually pretend 6 is one of the following:
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(1) Set (sets, Florian just considered this case),
(2) Top (topological spaces) ~ “topological operads”,
(3) Mod, (vector spaces) ~ “algebraic operads”.

So we save time and space by working with elements rather
than commutative diagrammes or in a graphical calculus.

Example 1.1.1.3. The symmetry will be represented by writing
dyw: VOW->WRV, vQuwr wdu,
even though the true formula could look different.

I also pretend throughout that all monoidal categories are
strict and all (co)limits you see exist.

Example 1.1.1.4. A graded vector space is a sequence V €
€ = GrMod, of vector spaces V(i), i € Z, and a morphism
V — W is a sequence of morphisms V(i) - W(i) in Mod,.
The monoidal structure is given by

(V@ W)(n) = @ V() ® WG,

i+j=n
and the explicit formula for the symmetry is
(11) syw: VOOW() = WHRV(), v®@w = (-1’ w®v.

To make GrMod self-enriched, we declare that all mor-
phisms have degree 0,

o n#0,
GV, W)(n) = {H,-ez Mod, (V(i), W(i)) n=0,

where 0 is the trivial vector space (the initial object in Mod,).
Note that 6(—, —) is not an internal hom, that is, in general
BUQ®V,W) 26U, B(V,W)). However, € is closed with

hom (V. W)(j) = B(V.s'W),
where s’W € GrMod is the j-fold suspension of W,

(SW)(n) :==W(n —1).
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1.1.2. The categories E and . A large class of examples
for € are functor categories [£, %] where % is some base
category and Z is some index category. If you are happy with
the examples 6 = Set, Top, Mod,, GrMod, just skip to 1.1.3
and take £ = 1, the terminal category with one object and
one morphism, so that &8 = 6.

Assumption 1.1.2.1. (%, ®, 1,1, hom) is a cosmos (a symmet-
ric closed monoidal category with all (co)limits). All categories
occurring are from now on %-enriched and all functors are
PB-linear. (£, +,0) is a (small) monoidal category.

Example 1.1.2.2. Set, Top, Mod, are default choices for %.

Proposition 1.1.2.3. The functor category [£, 3R] carries a
monoidal structure given by the coend

(i,) ) EEXE . X X .
(1.2) (VR W)n) := Z @+ j,n) V(i) ® W().
Definition 1.1.2.4. V ® W is the Day convolution of V and W.

Example 1.1.2.5. When Z is the terminal category 1 (one
object 0 € 1 with endomorphism object 1(0,0) := 1 € 3%, then
[1,98] = %, so one may always choose € to be the entire
cosmos one is working in.

Example 1.1.2.6. To obtain GrMod,, take % = Mod, and
F = Z, viewed as a discrete %B-enriched category,

. 0 i#}],
Z(z,J)::{1 i=j'

where 1 = K (the unit object in 8 = Mod,).

MSc Topic 1.1.2.7. Note that [Z, %] inherits a symmetry from
A, but the one given in (1.1) on GrMod, is more complicated
and involves the choice of a natural action of £ on Mod,
given by the parity operator: there is a natural involution 1n
on [Z, %] given by py(w) = (=1Yw for w € W(j), and this
yields an action i > w = p|, (w) of Z. Now 3, , is given by
VW v > w vy where v, ® vy, =i ®vif v e V(@).

Example 1.1.2.8. To obtain the category Ch of chain com-
plexes of vector spaces, one considers 3 = Mod, and takes
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as Z the category with object set Z and morphisms

1 i=j,j—1,
E(, j) = {0 #;J

where Z(i,i) = 1 = K has a vector space basis given by id,

while Z(i,i — 1) = K has a basis given by a morphism d, for
which d,_,od;, = 0 ~» “DG (differentially graded) operads”.

MSc Topic 1.1.2.9. One could generalise (1.2) to
(i,))EEXE i . . i
(13) (V®W)hn) := Z Z(@i+j,n) o V(i) @ W(j),

assuming now that Z is gl-enriched rather than %-enriched
and & is an g-%-bimodule category, 9 being yet another
monoidal category that acts on % from the left via

o AXPB — R,
A good setting for Hebig’s proof?

Example 1.1.2.10. Here is a cute example: Take o1 = Set,
so that Z is just any unenriched monoidal category, and ob-
serve that a cosmos % is anyway implicitly a Set-%-bimodule
category: just define A ¢ X to be the coproduct @A X, a
direct sum of copies of X € & indexed by the elements of
A € Set (exists as we assumed all colimits in & exist). That
this commutes with the right action of % on itself follows as
® is cocontinuous (since % is assumed to be closed). The
fact that the coproduct has the universal property that it has
and is not just any si-module category means that

B(Ao X,Y) = Set(A, B(X,Y)),

where B(—.—): B X B — Set takes the set of morphisms in
% (forget the self-enrichment).

1.1.3. The category 9. Our main aim is to define what it
means to add an algebraic structure to an object of some
category &. The setup for this is precisely the one from
1.1.2.10, just “one level up™

Assumption 1.1.3.1. (&, %, I) is a €-enriched monoidal cat-
egory and a 6-%-bimodule category via a functor

L BXD > D,
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that is, for C € 6, X,Y € @, we have
(C-X)*xY =C-(X *xY).
Furthermore, — - X is left adjoint to & (X, —), so in €, we have
D(C-X,Y)2B(C,D(X,Y)), CEBX,Y €D.

Remark 1.1.3.2. Some of the approaches to operads de-
scribed below work in greater generality, I assume this in
order to make them all equivalent.

Example 1.1.3.3. If € = Mod,, we could take @ = Modg.,
where R is a [K-algebra (a monoid in 6) and R* = RQ R is its
enveloping algebra so that & is the category of R-bimodules
with symmetric action of K. Here

C-X=CQRJX,

where @ = ®j is the tensor product of vector spaces (with
left and right R-action just on X).

1.1.4. The category N. The finalingredient we fix is a category
that controls the symmetries of the monoidal structures ®
of 6 and x of &. This can be generalised much further, but
the following is sufficient to give you an indication how the
various types of operads that occur in the literature can be
treated in a unified way. I have cobbled this together from
various sources and hope this is consistent.

Assumption 1.1.4.1. (V, +,0) is a monoidal subcategory of
the skeleton F on FinSet which has as objects the sets i :=
{0,...,i—1},i €N, and as morphisms all set maps,

F(i, j) = Set(i, j).

We consider F as a symmetric monoidal category with sym-
metric monoidal structure given by addition (concatenation).

Example 1.1.4.2. By S C [, I denote the permutation cate-
gory which is the core of [,

SG, j) = {Q) '

where S, is the group of all permutations of {0,...,i —1}.
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Example 1.1.4.3. The natural numbers N are always treated
as the discrete category with no morphism i — j if i # j and
one morphism i — i, the identity.

Definition 1.1.4.4. An N-monoidal structure on & assigns
to f € N(i,j)and V,...,V, | €D a natural morphism

f .
v,y - Yo Kk K Vg = Vg &k Vg,
and if g € N(k,i), h € N(m,n), we have
fog Y4 f
6V0’~~~7Vj—1 - éVf(O)’~~~’Vf<i—1>°3V0’~~~’Vj—1’
f+g _ . f h
éVO ----- Vi1 éVO ----- Vo o 6Vj""’vj+nfl.

Example 1.1.4.5. An N-monoidal category is a plain monoidal
category ~ “planar (= nonsymmetric) operads”.

Example 1.1.4.6. An S-monoidal category is a symmetric
monoidal category w “symmetric operads”.

Example 1.1.4.7. A little thought tells you that an [F-monoidal
category is the same as a cartesian category: a symmetric
monoidal category is cartesian if and only if every object is
in a unique way a coalgebra and all morphisms are coalgebra
morphisms. In terms of the F-monoidal structure, the co-
product (“universal copying”) is the morphism 57: V — V%V,
where m: 2 — 1 maps both 0, 1 to 0, and the counit (“univer-
sal deletion”) is 3{: V — I, where e: 0 — 1 is the initial map
~ “cartesian operads (= clones = Lawvere theories)”. See
e.g. [12] for details.

Assumption 1.1.4.8. € and & are N-monoidal categories.

Caveat 1.1.4.9. € is anyway assumed to be S-monoidal,
otherwise some of the definitions of an operad given below
don’t make sense. However, one still might choose & = N;
then the operad O lives in a symmetric monoidal category 6
but one does not use this in the “defining equations” of O.

MSc Topic 1.1.4.10. This is by far not the most general
setup that is studied, see e.g. [1, 2, 4, 8, 9, 10, 21] for
some ideas where this is going. For starters, & could come
with a monoidal functor u: & — [F rather than an inclusion;
this assigns to a symmetry f € N (x, y) an underlying map
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u(f) € F(, j), and the corresponding natural transformation
is a morphism :3\’;0’___’\,1__1 D Vokek Vi = Vo R ] Yy
This is needed e.g. when adding braided monoidal categories
to the picture, where W is the braid category B which is like
S, but with the braid group B, replacing ;. The functor u is
given by the group quotients B, — .S,. However, one can also
consider situations in which the tensorands are not just j
objects that are arranged in a linear order. So F could be re-
placed e.g. by categories of manifolds, see e.g. [3]. Once one
generalises the setup in this way, one needs more conditions
that we will mention briefly when we have enough material
to explain them. In the classical approach of Kelly (Max, not
Maggs), N should be a club. This defines a 2-monad & , on
Cat whose 2-algebras are N-monoidal categories. In partic-
ular, & can be recovered as the free #-monoidal category
K (1) on a single generator.

MSc Topic 1.1.4.11. It might be sufficient to demand at least
in some approaches that there is a functor ¥ X & — 9,
(n, X) — X*" satisfying this or that instead of a fully fledged
N-monoidal structure.

MSc Topic 1.1.4.12. In which generality can we Jazz up
N, S, F to make them 6-enriched?

1.2. Operads.

1.2.1. Approach I and II. 1 think this is the most elementary
and immediate one, so I begin with this; the idea is to make
sense of the following picture:

Figure 1. go, 3y (p=4,9=3)
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Idea 1.2.1.1. An (N-)operad (in 6) is a functor
O: NP >
together with morphisms

0,i- OP)®0(g) = O(p+q-1), i=1..,p

satisfying a unitality axiom (there is a unary operation id €
O(1) that is an identity for all o, ; just as with K-algebra, some
would drop this and consider also nonunital operads), and
the associativity axiom

(@0,; 000 sr—tipr—¥W  J <1,
(@0, W) 4112 = POpi(WOy i1 X) i<j<i+q-1,
((pop,j—q+1)()°p+r—1,i1// i+qg<}j.

Furthermore, one requires the o,; to be compatible with
morphisms in W, see 1.2.1.5 and 1.2.1.6 below.

Definition 1.2.1.2. We call ¢ € O(n) an n-ary operation in O.

Remark 1.2.1.3. Note that in the associativity axiom, the
symmetry 3 of € enters where y and y change places: just as
you need a symmetric monoidal category to enrich monoidal
categories, you need it to define operads. So when € =
GrMod, is the category of graded vector spaces, the above
formulas suppress signs (—=1)"!l7l in cases 1 and 3.

Caveat 1.2.1.4. Some people draw resp. read pictures up-
side down, some from right to left, some do both and then
the indices in the associativity axiom change. Besides this
convention on how to order the inputs of an n-ary operation,
there is the convention on how to order the operations that
are composed (whether Figure 1 depicts @o, 3y or wo, ;). In
this, we stick to the traditional convention on compositions
of functions. The abstract Approaches III - VI below avoid
these troubles.

Equivalently (assuming unitality), one may define an operad
as a functor O: N — € plus morphisms

o, i 0m®O>)® - &0, - O + - +i,)

whose axioms are derived from pictures such as the following:
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1 2 3 4 5 6

Figure 2. ¢°1,3,2[II/1 Ry, ® Wg]
The translation between Approaches I and II is given by

po, W =0 1, [dO® - QIdROY ®IdR - ®id]
respectively

,'n[llfl R Q Wr] = ((Pop,lll/1)°p+il_1,il+1llfz X -

.....

Idea 1.2.1.5. Let us use Approach II to discuss the assump-
tion that the composition operations in the operad are com-
patible with the symmetries prescribed by . There are two
distinct topics to discuss, and we first consider symmetries
acting on the y,: for a morphism f € N (p, q), we write O(f)
as a right action,

O(f): O(g) = O(p), @+ @<f.
Figure 2 suggests to demand
(@o; i ly; @ - @y, D(f1 + ...+ f,)

= (Pojl,___,jn[('llqul) ® - & (w,<f,)]
for all f, € N(j,,i,), r = 1,...,n. Since we demanded that
s/ ® »" = d/+" this can also be rewritten as

((Poil,,,,, v, ® - ®w,Da(fi +...+ 1)

= (pojl,,,,,jn[(l/ﬁ ® - Wn)q(fl + -+ fn)]

So these symmetries simply tell us that the operadic compo-
sition is right W -linear.

Idea 1.2.1.6. When it comes to symmetries acting on ¢,
things get a bit more interesting: Figure 2 also suggests to
demand that for g € N (m, n), we have

(p<g)o; , [w, ® - ®w,l = o,

i, L¥P1 el = WL

i, 8> v @ By,
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where we must make sense of g> [y, ® - @ v, ], and we want
that this can be expressed as (W) ® =+ @ Wy(,))<8 for some
g that depends on g but also the arities of the y,. Here is a
picture that explains the situation; therein, we are considering
(a<g)o,3[f ® v], where a,y € O(3), f € O(2), and g € F(3,2)

is given by g(0) = g(2) =0, g(1) = 1.
||
—
| ]| D

.

/7

The way how to get from g to § is what Kelly’s club structure
of W is about. At the end, this all means that we need the
composition operation to be a morphism

oi,,...,in: O(n) Qy [O(il) X O(in)] - O(i1 4o+ in)'

MSc Topic 1.2.1.7. Write this all up in a Hopf algebraic lan-
guage, N is the Hopf algebra, € is a bimodule? The above is
somehow about the centre in a bimodule category.

Remark 1.2.1.8. Depending on one’s taste one might prefer
to give the inputs of operations names as in [13, Definition 16].
For example, you could replace S by the category of all totally
ordered finite sets with all bijections as morphisms. Then
Figure 2 shows o, 5,[v, Qy,Qw;] € O([1,2,3,4,5,6]), where
[...] denotes an ordered set. If g = (123) € S, is the cyclic
permutation of the inputs of y, then the figure suggests
that (p<g)os,, [y, @ w3 ® v ] € O([2,3,4,5,6, 1]) should be
“the same” operation once one applies the appropriate block
permutation of the 6 inputs. For this to make sense we need
a functor u: &/ — S as mentioned in 1.1.4.10 which tells us
how to reorder the y, in this process. Note that the input
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of an n-ary operation is not the object V, ® --- ® V,, it is
the object with its decomposition into those factors. I think
this is where one should think about slice categories and
factorisation homology.

1.2.2. Examples.

Example 1.2.2.1. The endomorphism operad Endy of an
object X in & has

End,(n) := D(X™", X)
with
@0, ¥ = @o(idywi-1 * W Kk idy ).
For End, to be of type W, @ must be a priori an #-monoidal
category. However, this is not an if and only if, it might
happen that End, has more symmetries than one expects.

For example, in [12] we have shown that End, can be naturally
a cartesian operad even if @ is not cartesian.

Definition 1.2.2.2. If O is any operad, then an O-algebra
structure on X is an operad morphism a: O — End,, thatis, a
natural transformation of functors ¥#°? — 6 that is compatible
with the o ..

Example 1.2.2.3. For ¥ = N, the planar associative operad
Ass" is given by setting for all n

AssV(n) := 1,

with all o, ; being the canonical isomorphism 1 ® 1 = 1. An
AssMN-algebra is a unital associative algebra (a monoid) in &.

Example 1.2.2.4. When ¥ = S and we make all S, act trivially
on 1, we obtain the commutative operad

Comm(n) := 1.

That is, if we forget the trivial symmetry, the symmetric op-
erad Comm becomes the planar associative operad. But we
don’t, and that a Comm-algebra structure «: Comm — End,
is in particular a natural transformation of functors S — 6
shows that the Comm-algebras are precisely the commutative
algebras in 9; this structure could not have been defined
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when &/ = N. However, we may now define the symmetric
associative operad Ass® by

Ass®(n) =S,

and then Ass®-algebras are again just algebras in &. Note
Florian was considering this symmetric associative operad,
not the planar one.

Remark 1.2.2.5. There are also cyclic and modular operads,
but this is about duality in @, and about the spatial arrange-
ment of the pictures that represent compositions that could
be drawn not in the plane but on some oriented compact
smooth manifold of dimension 2 (compare spherical and
cylindrical monoidal categories). Here u is a functor to the
category of 2-dimensional oriented surfaces I suppose.

MSc Topic 1.2.2.6. In the theory of simplicial sets, one can
turn any set X into a simplicial set with X, = X and all
simplicial operators being identities; this is the “discrete
simplicial set”, when passing to the geometric realisation you
get the discrete topology on X. Comm and Ass" are like this.
What does this mean? What happens for other #?

1.2.3. Approach III and IV. Recall that we assume
DC-X,Y)26(C,D(X,Y)), Ce€B,X,Y eD.
Idea 1.2.3.1. In a concrete setting, a sequence of morphisms
a,: C, > DX, X)=Endy(n), n>0

in 6 thus corresponds to a sequence of morphisms
a,:C -X"—>X

in ®. If C, = O(n) for a functor O: ¥°? — 6 and the a,
are the components of a natural transformation, then the &,
assemble into a single morphism a: O(X) —» X in @, where
O is the endofunctor

N nenN

0: 2>, X0, X" =" 0m X

where the right hand side is a coend. Joyal (I think) called this
an analytic functor as it looks like a power series. In the world
of algebraic operads, O would be called an S-module and o
the associated Schur functor [16]. When O is an operad, then
O is a monad.
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In the down to earth cases I care about this is an if and only
if; even if it isn’t, I find this approach is really nice as it works
in greater generality and it incorporates 1.1.4.11 and 1.2.1.6
and many other ideas into the formalism in a neat way.

Example 1.2.3.2. For O = Ass", @(X) is the tensor algebra
@,-0 X*" which is the free associative algebra on X. For

O = Comm, O(X) is the free commutative algebra on X, that
is, the symmetric algebra. The free Lie algebra is a more
subtle topic, see e.g [22].

One can also carry the above over to a monoidal product on
the functor category [N P, €] (the composite or substitution
product o). Just as groups are nowadays defined as abstract
groups and not as transformation groups, I'd use this as
definition:

Definition 1.2.3.3. An operad is a monoid in ([N, €], o, ).

This has the advantage that we do not need to introduce
any category & at all but study the operad in its own right.
However, I am more interested in O-algebras, hence move
on without explaining this approach in detail.

Example 1.2.3.4. In [21], Shulman indicates that you can
go way beyond our setting: that an operation has a finite
number of inputs is irrelevant and at least for € = Set he
claims you could actually also take & = 6°P. Then [N°P, €] is
the category of endofunctors on € and o becomes just the
composition, so an operad is a monad on 6. This is a bit as
with rings vs. algebras: rings are special K-algebras (namely
K = Z) and not the other way round.

1.2.4. Approach V and VI. Florian worked from the start with
multicategories (= coloured operads). Then an operad is just
a multicategory with a single object. I won’t need this, but
recall that to any monoidal category & Florian associated the
multicategory End,, represented by & (the endomorphism
operad is the case of a monoidal category that is monoidally
generated by one object). End is right adjoint to the free
monoidal category functor F and allegedly (at least Tony,
Zbiggi and Gemini seem to agree on this), the unit of this
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adjunction is an equivalence @ = F(End,,): a monoidal cat-
egory can be reconstructed from the associated (coloured)
operad.

Finally, Florian told us how to associate to an operad O
its category of operators O® which comes naturally with a
Grothendieck opfibration whose codomain was in Florian’s
talk finite pointed sets.

MSc Topic 1.2.4.1. As far as I understand Shulman [21], the
codomain is in general the category of operators (End)®
of the operad associated to N. For & = N, this is the op-
posite of the simplicial category A, so a planar operad can
be characterised as a Grothendieck opfibration O® — A°
(see Lurie’s collected works, e.g. [17]). The advantage of this
approach is that it is now relatively straightforward to replace
categories by co-categories in order to define co-operads.

The construction of O® looks as if it could be the free
monoidal category F(O), one forms forests and the fibre func-
tor keeps track of their decompositions into trees (which in
the symmetric case might be entangled and in the cartesian
case even merge or diverge), but it seems things are more
subtle: one first takes the free semicartesian operad on the
given one, so one upgrades N if necessary (not sure what
happens if that was already [F), and only then takes the free
semicartesian monoidal category on this semicartesian op-
erad. So for semicartesian multicategories, F(O) = O® as is
also stated on nLab [18].

1.3. Operads with multiplication.
1.3.1. Definition.
Assumption 1.3.1.1. For the time being, ¥ = N.

Definition 1.3.1.2. An operad with multiplication is an operad
O together with an operad morphism Ass" — O.

Remark 1.3.1.3. In € = Set, Top, Mod,, this is an operad
together with an element u € O, such that uo, ,u = uo,,pu.

Remark 1.3.1.4. Gerstenhaber introduced this under the
name comp algebra and called u the distinguished element.

MSc Topic 1.3.1.5. As a continuation of 1.2.2.6, should one
think of a pointed operad?
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Remark 1.3.1.6. Ass" — O induces a forgetful functor from
O-algebras to associative algebras. So O-algebras are asso-
ciative algebras with more structure added.

1.3.2. Examples. The historic example is the following:

Example 1.3.2.1. Turning the endomorphism operad End,
into an operad with multiplication is the same as turning
X into a monoid. This is the key example considered by
Gerstenhaber in € = 9 = Mod, where X is simply a unital
associative K-algebra. However, recall the example € =
Mod,, 2% = Mod,. where R is a K-algebra. Then X is a
[K-algebra with a KK-algebra morphism R — X (an R-ring).

Example 1.3.2.2. If H is a Hopf algebra over K (6 = & =
Mody), define

C(n) :== Mod, (H®",K)
and for each ¢ € C(p) the map

. ®, 1 1 1
D, H¥ > H, h'® - ®h v ! ... .h hly - hb

Then C becomes an operad with multiplication
p=e"u

where u': H ® H — H is the multiplication in H and £ is
its counit, and with

(po, w)(h', ... h"*~h)
=qh', ..., W~ D, (R, ... A, pt e,

Note that uf = D,. If Ais aleft H-comodule algebra, then
generalising the formula for D, to

a: C(n) = End,(n), a(@)a',....a") = @la_,, ..., a._)ag -

turns A into a C-algebra. Somehow the associative operad
gets twisted by C.

Remark 1.3.2.3. C is the K-linear dual of the (unnormalised)
bar construction of H, so this carries the structure of a cosim-
plicial K-module whose cohomology is Ext, (K, K) and we
will link this to the operad structure in a minute. One could
also work directly with the bar construction and give it a co-
operad structure which is maybe much more pleasing and
enlightening in the context of bar-cobar duality. Note also all

n
0
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this extends to Hopf algebroids and then includes the case
of the endomorphism operad covered by Gerstenhaber [11].

2. Gerstenhaber algebras up to homotopy

Here I explain how (algebraic) operads become (graded)
pre-Lie algebras and operads with multiplication become
Gerstenhaber algebras up to homotopy.

2.1. Pre-Lie algebras.

2.1.1. Definition.

Assumption 2.1.1.1. ¥ = S, so & is a symmetric monoidal
category and “operad” means “symmetric operad”.

Remark 2.1.1.2. Any associative product 5 on a K-module
X turns X into a Lie algebra with respect to the commutator
[x, y] := x6y—yox, and like all such forgetful functors between
types of algebra this can be expressed in terms of a morphism
of symmetric operads Lie — Ass®. We now generalise this.

Definition 2.1.1.3. A pre-Lie (aka Vinberg) algebra structure
on X € 9 is a binary operation 6: X x X — X that satisfies
a(x,y,z) = a(x, z, y),

where a(x, y, z) := (x6y)6z — x5(y56z) is the associator of a.
Remark 2.1.1.4. Obviously, there is a symmetric operad

PreLie whose algebras are pre-Lie algebras. Just as with Lie,
this only can be defined if 6 allows us to add (e.g. 6 = Mody).

Proposition 2.1.1.5. The commutator of a pre-Lie algebra
structure is a Lie algebra structure.

Proof. The skewsymmetry is given by definition, the question
is whether the Jacobi identity is satisfied. Direct computation
shows that

[X1a [xz, x3]] + [xz’ [x37 x]]] + [x3, [x]’ xz]]

= Z (_1)|0|a(x0_(1), X502y x6(3)),

0ES;

which vanishes if a is symmetric in the last two entries. [
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Example 2.1.1.6. When 6 = GrMod,, “commutator” means
“graded commutator”, so the true formula for the commutator
without suppressed signs is x5y — (=1)*IMly5x, Similarly, “Lie
algebra” means “graded Lie algebra”, so

[x, ] = =(=DMP1[y, x]
and there are also signs in the Jacobi identity
[x, [y, z]] + (=DHFPEZ [x y]] 4 (= DHHED Ly [z, x]] = 0,
which can be neater written as
(=DM [x, [y, 211+ (DM 2, [x, y1 4+ (=DM, [z, x]] = 0.

Remark 2.1.1.7. The converse of 2.1.1.5 is not true. In fact,
the proof shows that we also obtain a Lie bracket if a(x, y, z)
is symmetric in x, y or if it is symmetric in x, z. In particular,
if a is the associator of 5, then the associator of the opposite
product x5y = yox is given by f(x, y, z) = a(z, y, x). So o°P
is an example of the variation on pre-Lie algebras where
one demands the associator to be symmetric in the first two
entries. This is related to the convention choice whether
pictures are read from left to right or from right to left as
mentioned in 1.3.1.6. As yet another example, if & itself is a
Lie bracket, then so is the its commutator, but here Jacobi
tells us that the associator is rather symmetric in x and z.

2.1.2. Examples.

Example 2.1.2.1 (in honour of Julius). Take € = 6 = 9 =
Mod,. A connection on the vector fields on an affine scheme,
that is, on the derivations X := Der,(A) of a commutative
algebra A € & (or more generally on a Lie-Rinehart algebra
X over A) is a morphism

Vi XX - X, xQy—V,y

such that V_,y = aV.y, V_ (ay) = x(a)y + aV,y holds for all
a € A (V,yisreferred to as the covariant derivative of y along
x with respect to the connection). The connection is flat if

V.(V,2) =V (V,2) =V ,z
and torsionless if

V,y=V,x =[xyl
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and one easily shows that x5y := V x is a pre-Lie algebra
structure if V is flat and torsion-less.

Example 2.1.2.2. This is a warm-up for 2.1.2.6 below where
I give a full proof. Take € = @ = Mod,, let T be the vector
space with a basis given by all rooted trees (non-planer, no
ordering of vertices), and define for trees x, y
X0y := Z X0,y
ieV(x)

where i runs through all vertices (not just leaves!) of x and
xo,y is obtained by attaching the root of y to the vertex i as
a new branch (as the branches of a vertex are not ordered,
the question where to attach does not arise) . Then (T, ) is
the free pre-Lie algebra F%L\ieﬂ) with a single generator.

Maybe the following only holds in characteristic O, have
forgotten:

Theorem 2.1.2.3 ([15]). Let H = @),,,(X®')": be the symmet-
ric coalgebra on a vector space X (the coffee cocommutative
conilpotent coalgebra on X that consists of all symmetric
tensors over X with the deconcatenation coproduct). Then
the pre-Lie algebra structures on X correspond bijectively
to right-sided Hopf algebra structures on H, meaning those
for which all @, (X®)%, n=0,1,2, ... are right ideals of H.

Example 2.1.2.4. The Hopf algebra arising from rooted trees
has been considered by Connes-Kreimer and has been gen-
eralised to a Hopf algebra whose (co)generators are labelled
by Feynman diagrams. This yields a Hopf algebra approach
to renormalisation.

MSc Topic 2.1.2.5. More a topic of Oliver: The Butcher group.

Proposition 2.1.2.6. Every planar (i.e. nonsymmetric) operad
O becomes a pre-Lie algebra with

p
@Oy = Z @o, v, @€ O(p).

i=1
Proof. The associator is given by

p ptq-1 q p

a(go’ W’ X) = Z (goop,iW)op+q—l,jX - z 2 goop,i(woq,j/%/)
=1

i=l j= j=1 i=1
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i—1 p i+gq-1

(@op,[llj)op-}—q—l’jx + Z Z (@op,[u/)op-}—q—l’jx

i=1 j=i

I
- IV

~.
—_

ptq-1

+ Z Z (¢O zllj)op-',-q ]JX Z Z ¢opl(lljoqjx)
i=1 j=i+q i=1 j=
p i—1 p p+q-1

= Z 2(§0°pzllf)°p+q 1]% + Z Z (q)opzW)°p+q ljl
i=1 j=1 i=1 j=i+q
p i—-1 p—1 p+q-1

= Z Z(¢op[u/)op+q IJI+ Z Z (@Opj q+1%) p+q— llllj
i=1 j=1 i=1 j=i+q
p i1 p—1 p

= Z (¢°p,iW)°p+q—1,j)( + Z Z ((pop,k)()opﬂ’—l,ill/
i=1 j=I1 i=1 k=i+1
p i—1 p k-1

= Z (¢oplllj)op+q ljx + Z Z((popkl)op+r IIW’
i=1 j=1 k=1 i=1

which is manifestly symmetric in y, y. Note a simply puts y
and y into all pairs of inputs of ¢ and sums up. O

Reappraisal 2.1.2.7. A planar operad is by very definition
also a graded object in 6 with the arity of ¢ € O(p) being
its degree. However, the o,; are not compatible with this
degree; if we want them to be, we should rather consider the
desuspension of O and hence define

lpl:==p—1, @ €O(p)
as we then have for ¢ € O(p), w € O(q)
|(pop’i(//| =(p+q-1)—-1=p—-1+qg—-1=|@|+|yv|.

§o we associate to every operad O € 6 the graded presheaf
O € [N°P,Gr(6)] given by

- O j=n-—1,

Is O an operad in Gr(®)? Almost, but the symmetry in the
associativity axiom is the one from 6, not the one from Gr(6)
that involves the sign (—=1)¥!l#! in cases 1 and 3. However, we
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can fix this (assuming that we have an operation x — —x in
6 of course), by also redefining

@5,y = (—l)ll”l(i_])goop’il//.

I memorise this sign by keeping in mind that when evaluating
@o,; ¥ onx; ® - ®x,,, , the y has to first jump over i —1
tensor components. And with this sign added, the associa-
tivity rules incorporate the correct signs, which, if I do not
suppress them, read

(_1)(q_l)(r_l)(qoap,j)()ap+r—1,i+r—1W j<i,
(goap,il//)apﬂ)—l,j)( = qoap,i(lllaq,j—i-{-l/}/) i S] S i + q + 17
(_1)(q_1)(r_])(¢6pvj—q+1X)6p+r—1,il// i + q S .]
Long story short:

Proposition 2.1.2.8. If (O, 0,,) is a planar operad in 6, then
(0, 3,,) is a planar operad in Gr(®).

Remark 2.1.2.9. This degree shift is initially confusing, but
can be seen in many other constructions. For example, when

taking a projective resolution P of an object X in an abelian
category 9, we have an exact sequence

0P, —-...>F->X-0

where P appears to be shifted in degree by 1. This is how the
operadic degree shift sneaks in when one takes the Yoneda
approach to Gerstenhaber algebras [19, 20, 6].

Corollary 2.1.2.10. If O is a planar operad in 6, then O is a
pre-Lie algebra in Gr(6) via

POy = ) @O,y

p
i=1

Definition '2.1.2.11. We denote the induced (graded!) Lie
bracket on O by {—, —} and call this the Gerstenhaber bracket.

Example 2.1.2.12. If 4 € O(2) is a binary operation, then
MOU = MO, 1 1 — Oy U,

so u is associative iff it is self-parallel with respect to the
“connection” given by o.
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Remark 2.1.2.13. In [11] we have worked with 3°, hence
there is a sign (=1)!“/l*! in front of the definition.

Remark 2.1.2.14. If one wants to avoid the introduction of
O, one can view O as a graded Lie algebra whose Lie bracket
is a morphism of degree 1, {—,—} € homg,.,(O ® O, O)(D).

2.2. Brace algebras.

2.2.1. Gerstenhaber algebras up to homotopy.
Assumption 2.2.1.1. O is a planar operad with multiplication.

MSc Topic 2.2.1.2. What is actually the right assumption
about € here? I though the involution x — —x is like a ribbon
category, only symmetric, and Set also has that, with —x = x.
But for pre-Lie algebra we need to add. If we demand €6 to
be additive this is still not right, as we want to add elements
of objects in 6. Maybe the best is not to have € at all but
just an additive category &?

Definition 2.2.1.3. The cup product is the binary operation
O(P) ® O(CI) - O(p + CI), QY= (/’lop,lgo)op+l,p+lw
The coboundary map on O is given by
d:={—,u}: On) - O(n+1).

Example 2.2.1.4. If C(n) = Mod,(H®", K) is the operad
associated to a Hopf algebra H (Example 1.3.2.2), then

(p < y)(h',... hP*)

— 1 p ptl ptq 1 ... P ptl pptq
kAU L A GRS LA LA L)
_ 1 p p+l ptq _Hepl | 3P+
= qo(h(l), cees h(]))y/(h(l) Y s h(l) € (h(z) h(z) )

= @(h', ..., Ry (k" .. P

is the product dual to the deconcatenation coproduct on the
bar construction [16] (unnormalised, meaning we do not just
consider the tensor coalgebra of the augmentation ideal kere
but of all of H). For ¢ € O(p),

(u@)(h', ... h"*T)
= (', ..., me" (W) + (=1 e (WYoh?, ..., hPH
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and
(@ou)(h', ..., WP = p(h'h*, h°, ... h?)
—@(h',R*R* h*, ... hP)
T 0 D Ly (LY 1J Tans '}
Thus

do ={@.u} = @du— (-1 use
is the dual of the boundary map of the bar construction,
(d)(h', ..., """ = =" (W)p(n?, ..., A"*")—
o' 1, .. T+ )

In particular, dod = 0 and the cohomology of the cochain
complex (O, d) is Ext (K, K) € GrMod,.

We now return to the general case of a planar operad and
show that the above example is paradigmatic. The following
lemmata show that d, - and {—, —} together equip O with a
highly nontrivial algebraic structure.

Lemma 2.2.1.5. dd =0.
Proof.
He.ulu} = {@ou — (1) use, u}
= (pop — (1) use)ou
— (=D us(psu — (=) ue)

Recall that you =0, so

(pou)opu = (pou)ou — @o(usu) = a(@, u, 1),
and this vanishes as the associator is symmetric in the last
two entries and u has degree |u| = 1 so symmetric means

antisymmetric in this case. Similarly, the remaining three
terms plus 0 = (uSu)d¢ can be rewritten as

a(,u’ H, ¢) - (—1)|¢|(X(ﬂ, @, //I)
which also vanishes in view of the symmetry of a. O

Lemma 2.2.1.6. We have
d(pdy) — pddy — (1) depdy
— (_1)|(P|+|W|((p vy - (_1)|¢IIWIW < Q).
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Proof. When we suppress signs, we have
d(poy) = (pdw)ou — uds(psy),
(d@)oy = (pou)oy — (udS@)oy,
Po-dy = @o(you) — pd(udsy),
SO
A(@oy) — pody — ddy
= a(@,w, u) — a(@, p, ) + a(p, ,y).
Note, however, that with the signs in, we'd rather get
d(pdy) — pody — (-1 dedy
= a(p,w, u) — (D" a(p, p,w) + (D" Wa(u, ¢, y).

The first line tells us that we should rather think of d as acting
from the right; the second line is consistent as an expression
evaluated on @y ®u. That the associator a(u, @, v) is simply
the (graded) commutator of the cup product follows from the
abstract formula (in the proof of Proposition 2.1.2.6). O

Remark 2.2.1.7. This is a version of the Eckmann-Hilton
argument. One way to look at this is that if - is graded com-
mutative, then & descends to the cohomology of . Another
way to look at it is that on that cohomology, « becomes
graded commutative. Note that — does not have to do the
desuspension, it uses the arity as the degree.

Corollary 2.2.1.8. (O, {—, -}, d) is a DG Lie algebra,
d{o.w) —{o.dy} — (DY {de,y} =0.

Proof. The previous lemma tells us that O is in general not
a DG pre-Lie algebra, but when taking the commutator, the
right hand sides cancel out. OJ

Lemma 2.2.1.9. We have
(pww)dy —(dy)—y — (=DIeHDlg o (yay) = 0.

Proof. Straightforward. Maybe one should number things
from right to left... 0J

The other way round is much less pleasant:
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Lemma 2.2.1.10. Given ¢ € O(p),w € O(q), y € O(r), define

r pt+r—1

B(x.o.w) =) ) (x8,0)5,y.

i=1 j=i+p
Then
28(p < w) — (=DI"WI(y3¢) vy — (=1)*lp © (yoy)
= i'd/BZ(/}/a @, W) =+ BZ(d/X’ @, lI/)
+ B,(y,do,w) £ B,(x, p,dy).

MSc Topic 2.2.1.11. Find the signs using my &, instead of
the usual o,. There are less terms than one thinks. I am not
just not working them out here because I am too lazy but
because below I will discuss brace algebras and then there
will be a more conceptual ansatz for how to find them.

Remark 2.2.1.12. This is the one formula that Gerstenhaber
did not find in full generality but only for cocycles.

Corollary 2.2.1.13. We have

lovw, xt—{o, x} v w—(=DIeHdg O Ly, 41 = ...

Remark 2.2.1.14. When it comes to v, {—, y} thus behaves
like a graded derivation acting from the left.

Corollary 2.2.1.15. (O, -, d) is a DG algebra.

Proof. That w is associative on the nose is straightforwardly
verified. The Leibniz rule follows from the previous corollary
by taking y = pu. O
Corollary 2.2.1.16. The cohomology

G := kerd /imd € Gr(8)

of an operad with multiplication is a Gerstenhaber algebra,
that is,

v G() ® G(j) = G + )
turns G into a graded commutative algebra,
{=-}:GHRGH) - Gi+j—-1)
turns s~'G into a graded Lie algebra, and we have

lovw, xt=1{p, x} vy +(DIHIg O fy, ¥
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2.2.2. Brace algebras. We have proved some lemmata and
then stated a corollary, but what was the theorem? It was
that the operad itself, not its cohomology, can be equipped
with a strange algebraic structure:

Theorem 2.2.2.1. An operad is naturally a brace algebra.

Definition 2.2.2.2. A brace algebra structure on X is a se-
quence of n + 1-ary operations

B: X*™! o X,
satisfying
B, (B, (X, Y1, s V) Z1seee s Zp)
=) B, (... By (3s e By (e s ),
where all the ... are filled with the z; in their original order.

Remark 2.2.2.3. Traditionally, one writes

Bn(x’ Vi ’yn) = x{y19 ’yn}'

Remark 2.2.2.4. Of course here signs come in if one works
in a graded context.

Example 2.2.2.5. When starting with an operad with multi-
plication, the O-brace is the identity,

B, = id,
the pre-Lie product s is the 1-brace

@doy = Bi(p,yv) = oy}

and B, you have seen above, so the braces simply insert the
n inputs y,,...,y, in all ways into x. Note that for this the
multiplication is not yet needed, but if there is one, it defines
the cup product

ulo, v}
and the coboundary map as before, and then one can derive
all the formulas from the brace relations.

If the braces are symmetric in the y, then they can be shown
to be determined by the pre-Lie structure, so symmetric
braces algberas are equivalent to pre-Lie algebras [14]. The
following is thus the logical nonsymmetric version of 2.1.2.3:
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Theorem 2.2.2.6 ([15]). Let H = @,., X® be the tensor
coalgebra on a vector space X (the cofree conilpotent coal-
gebra on X with the deconcatenation coproduct). Then the
brace algebra structures on X correspond bijectively to right-
sided Hopf algebra structures on H.

3. Little discs
3.1. More on Gerstenhaber algebras.
3.1.1. Poisson algebras.
3.1.2. Almost commutative algberas.
3.1.3. Lie-Rinehart algebras.
3.1.4. The recognition problem.
3.1.5. Deligne, Kontsevich & Co.
3.2. Littles discs and the Deligne conjecture.
3.21. E,.
3.22. H(E,).
323. d=1,d =2
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