
ADDITIVITY FOR BEGINNERS

ULI

Abstract. I recall parts of Florian’s talk since a month
has passed. Then I explain how operads become graded
Lie algebras and operads with multiplication become
Gerstenhaber algebras up to homotopy (which is an early
instance of the 𝑚 = 𝑛 = 1 case of the additivity theorem).
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1. Operads with multiplication

In this first section I recall and generalise various defi-
nitions introduced by Florian last time. Afterwards I define
operads with multiplication, which is new material.

1.1. Categorical setup. Our aim is to study a specified type
of algebraic structure, say a Lie algebra. This is an object 𝑋
of some category D plus the algebraic structure on it, and
the latter is given by the action of an operad. The operad
itself is a functor 𝖮∶ Nop → Cwhose domain N contains the
“symmetries” used to describe the algebraic structure, while
its values 𝖮(𝑛) are the “spaces of operations” that consti-
tute the algebraic structure itself, so C determines whether
“space” means vector space, topological space, or something
else. In many examples, C arises itself as a functor category
[Z,B] where B is some cosmos one works in, and Z is some
index category (e.g. B vector spaces, C chain complexes).

category role of objects
D carrier 𝑋 of an 𝖮-algebra structure
N arity (shape of input) of an operation in 𝖮
C space 𝖮(𝑛) of all 𝑛-ary operations in 𝖮
B anything that exists in our cosmos
Z degree ‖𝜑‖ of an operation 𝜑 ∈ 𝖮(𝑛)

1.1.1. The category C. We make:

Assumption 1.1.1.1. Throughout this text, (C, ⊗, 𝟣, s) is a
self-enriched symmetric monoidal category.

Example 1.1.1.2. We usually pretend C is one of the following:
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(1) 𝐒𝐞𝐭 (sets, Florian just considered this case),
(2) 𝐓𝐨𝐩 (topological spaces) ⇝ “topological operads”,
(3) 𝐌𝐨𝐝𝕂 (vector spaces) ⇝ “algebraic operads”.

So we save time and space by working with elements rather
than commutative diagrammes or in a graphical calculus.

Example 1.1.1.3. The symmetry will be represented by writing

s𝖵,𝖶∶ 𝖵⊗𝖶 → 𝖶⊗ 𝖵, 𝑣 ⊗ 𝑤 ↦ 𝑤⊗ 𝑣,

even though the true formula could look different.

I also pretend throughout that all monoidal categories are
strict and all (co)limits you see exist.

Example 1.1.1.4. A graded vector space is a sequence 𝖵 ∈
C= 𝐆𝐫𝐌𝐨𝐝𝕂 of vector spaces 𝖵(𝑖), 𝑖 ∈ ℤ, and a morphism
𝖵 → 𝖶 is a sequence of morphisms 𝖵(𝑖) → 𝖶(𝑖) in 𝐌𝐨𝐝𝕂.
The monoidal structure is given by

(𝖵⊗𝖶)(𝑛) ≔
⨁

𝑖+𝑗=𝑛
𝖵(𝑖)⊗𝖶(𝑗),

and the explicit formula for the symmetry is

(1.1) s𝖵,𝖶∶ 𝖵(𝑖)⊗𝖶(𝑗) → 𝖶(𝑗)⊗𝖵(𝑖), 𝑣⊗𝑤↦ (−1)𝑖𝑗𝑤⊗𝑣.

To make 𝐆𝐫𝐌𝐨𝐝𝕂 self-enriched, we declare that all mor-
phisms have degree 0,

C(𝖵,𝖶)(𝑛) ≔

{

𝟢 𝑛 ≠ 0,
∏

𝑖∈ℤ 𝐌𝐨𝐝𝕂(𝖵(𝑖),𝖶(𝑖)) 𝑛 = 0,

where 𝟢 is the trivial vector space (the initial object in 𝐌𝐨𝐝𝕂).
Note that C(−,−) is not an internal hom, that is, in general
C(𝖴⊗ 𝖵,𝖶) ≇ C(𝖴, C(𝖵,𝖶)). However, C is closed with

𝗁𝗈𝗆C(𝖵,𝖶)(𝑗) = C(𝖵, 𝗌𝑗𝖶),

where 𝗌𝑗𝖶 ∈ 𝐆𝐫𝐌𝐨𝐝𝕂 is the 𝑗-fold suspension of 𝖶,

(𝗌𝖶)(𝑛) ≔ 𝖶(𝑛 − 1).
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1.1.2. The categories Z and B. A large class of examples
for C are functor categories [Z,B] where B is some base
category and Z is some index category. If you are happy with
the examples C= 𝐒𝐞𝐭,𝐓𝐨𝐩,𝐌𝐨𝐝𝕂,𝐆𝐫𝐌𝐨𝐝𝕂 just skip to 1.1.3
and take Z = 𝟏, the terminal category with one object and
one morphism, so that B= C.

Assumption 1.1.2.1. (B, ⊗, 𝟣, t, 𝗁𝗈𝗆) is a cosmos (a symmet-
ric closed monoidal category with all (co)limits). All categories
occurring are from now on B-enriched and all functors are
B-linear. (Z,+, 0) is a (small) monoidal category.

Example 1.1.2.2. 𝐒𝐞𝐭,𝐓𝐨𝐩,𝐌𝐨𝐝𝕂 are default choices for B.

Proposition 1.1.2.3. The functor category [Z,B] carries a
monoidal structure given by the coend

(1.2) (𝖵⊗𝖶)(𝑛) ≔
∑(𝑖,𝑗)∈Z×Z

Z(𝑖 + 𝑗, 𝑛)⊗ 𝖵(𝑖)⊗𝖶(𝑗).

Definition 1.1.2.4. 𝖵⊗𝖶 is the Day convolution of 𝖵 and 𝖶.

Example 1.1.2.5. When Z is the terminal category 𝟏 (one
object 0 ∈ 𝟏 with endomorphism object 𝟏(0, 0) ≔ 𝟣 ∈ B, then
[𝟏,B] = B, so one may always choose C to be the entire
cosmos one is working in.

Example 1.1.2.6. To obtain 𝐆𝐫𝐌𝐨𝐝𝕂, take B = 𝐌𝐨𝐝𝕂 and
Z= ℤ, viewed as a discrete B-enriched category,

ℤ(𝑖, 𝑗) ≔

{

𝟢 𝑖 ≠ 𝑗,
𝟣 𝑖 = 𝑗,

where 𝟣 = 𝕂 (the unit object in B= 𝐌𝐨𝐝𝕂).

MSc Topic 1.1.2.7. Note that [Z,B] inherits a symmetry from
B, but the one given in (1.1) on 𝐆𝐫𝐌𝐨𝐝𝕂 is more complicated
and involves the choice of a natural action of Z on 𝐌𝐨𝐝𝕂
given by the parity operator: there is a natural involution p

on [ℤ,B] given by p𝖶(𝑤) = (−1)𝑗𝑤 for 𝑤 ∈ 𝖶(𝑗), and this
yields an action 𝑖 ⊳ 𝑤 = p𝑖

𝖶(𝑤) of ℤ. Now s𝖵,𝖶 is given by
𝑣 ⊗ 𝑤 ↦ 𝑣(−1) ⊳𝑤⊗ 𝑣(0) where 𝑣(−1) ⊗ 𝑣(0) = 𝑖 ⊗ 𝑣 if 𝑣 ∈ 𝖵(𝑖).

Example 1.1.2.8. To obtain the category 𝐂𝐡𝕂 of chain com-
plexes of vector spaces, one considers B= 𝐌𝐨𝐝𝕂 and takes
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as Z the category with object set ℤ and morphisms

Z(𝑖, 𝑗) ≔

{

𝟣 𝑖 = 𝑗, 𝑗 − 1,
𝟢 𝑖 ≠ 𝑗,

where Z(𝑖, 𝑖) = 𝟣 = 𝕂 has a vector space basis given by id𝑖
while Z(𝑖, 𝑖 − 1) = 𝕂 has a basis given by a morphism 𝑑𝑖 for
which 𝑑𝑖−1◦𝑑𝑖 = 0 ⇝ “DG (differentially graded) operads”.

MSc Topic 1.1.2.9. One could generalise (1.2) to

(1.3) (𝖵⊗𝖶)(𝑛) ≔
∑(𝑖,𝑗)∈Z×Z

Z(𝑖 + 𝑗, 𝑛) ⋄ 𝖵(𝑖)⊗𝖶(𝑗),

assuming now that Z is A-enriched rather than B-enriched
and B is an A-B-bimodule category, A being yet another
monoidal category that acts on B from the left via

⋄∶ A× B→ B.

A good setting for Hebig’s proof?

Example 1.1.2.10. Here is a cute example: Take A = 𝐒𝐞𝐭,
so that Z is just any unenriched monoidal category, and ob-
serve that a cosmos B is anyway implicitly a 𝐒𝐞𝐭-B-bimodule
category: just define 𝐴 ⋄ 𝑋 to be the coproduct

⨁

𝐴𝑋, a
direct sum of copies of 𝑋 ∈ B indexed by the elements of
𝐴 ∈ 𝐒𝐞𝐭 (exists as we assumed all colimits in B exist). That
this commutes with the right action of B on itself follows as
⊗ is cocontinuous (since B is assumed to be closed). The
fact that the coproduct has the universal property that it has
and is not just any A-module category means that

B(𝐴 ⋄𝑋, 𝑌 ) ≅ 𝐒𝐞𝐭(𝐴,B(𝑋, 𝑌 )),

where B(−.−)∶ Bop ×B→ 𝐒𝐞𝐭 takes the set of morphisms in
B (forget the self-enrichment).

1.1.3. The category D. Our main aim is to define what it
means to add an algebraic structure to an object of some
category D. The setup for this is precisely the one from
1.1.2.10, just “one level up”:

Assumption 1.1.3.1. (D, ⋆, 𝐼) is a C-enriched monoidal cat-
egory and a C-D-bimodule category via a functor

⋅∶ C× D→ D,
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that is, for 𝐶 ∈ C, 𝑋, 𝑌 ∈ D, we have

(𝐶 ⋅𝑋) ⋆ 𝑌 ≅ 𝐶 ⋅ (𝑋 ⋆ 𝑌 ).

Furthermore, − ⋅𝑋 is left adjoint to D(𝑋,−), so in C, we have

D(𝐶 ⋅𝑋, 𝑌 ) ≅ C(𝐶, D(𝑋, 𝑌 )), 𝐶 ∈ C, 𝑋, 𝑌 ∈ D.

Remark 1.1.3.2. Some of the approaches to operads de-
scribed below work in greater generality, I assume this in
order to make them all equivalent.

Example 1.1.3.3. If C = 𝐌𝐨𝐝𝕂, we could take D = 𝐌𝐨𝐝𝑅𝑒 ,
where𝑅 is a 𝕂-algebra (a monoid in C) and𝑅𝑒 = 𝑅⊗𝑅op is its
enveloping algebra so that D is the category of 𝑅-bimodules
with symmetric action of 𝕂. Here

𝐶 ⋅𝑋 = 𝐶 ⊗𝑋,

where ⊗ = ⊗𝕂 is the tensor product of vector spaces (with
left and right 𝑅-action just on 𝑋).

1.1.4. The category N. The final ingredient we fix is a category
that controls the symmetries of the monoidal structures ⊗
of C and ⋆ of D. This can be generalised much further, but
the following is sufficient to give you an indication how the
various types of operads that occur in the literature can be
treated in a unified way. I have cobbled this together from
various sources and hope this is consistent.

Assumption 1.1.4.1. (N,+, 0) is a monoidal subcategory of
the skeleton 𝔽 on 𝐅𝐢𝐧𝐒𝐞𝐭 which has as objects the sets 𝑖 ≔
{0,… , 𝑖 − 1}, 𝑖 ∈ ℕ, and as morphisms all set maps,

𝔽 (𝑖, 𝑗) ≔ 𝐒𝐞𝐭(𝑖, 𝑗).

We consider 𝔽 as a symmetric monoidal category with sym-
metric monoidal structure given by addition (concatenation).

Example 1.1.4.2. By 𝕊 ⊂ 𝔽 , I denote the permutation cate-
gory which is the core of 𝔽 ,

𝕊(𝑖, 𝑗) ≔

{

∅ 𝑖 ≠ 𝑗,
𝑆𝑖 𝑖 = 𝑗,

where 𝑆𝑖 is the group of all permutations of {0,… , 𝑖 − 1}.
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Example 1.1.4.3. The natural numbers ℕ are always treated
as the discrete category with no morphism 𝑖→ 𝑗 if 𝑖 ≠ 𝑗 and
one morphism 𝑖→ 𝑖, the identity.

Definition 1.1.4.4. An N-monoidal structure on D assigns
to 𝑓 ∈ N(𝑖, 𝑗) and 𝖵0,… ,𝖵𝑗−1 ∈ D a natural morphism

s
𝑓
𝖵0,…,𝖵𝑗−1

∶ 𝖵0 ⋆⋯ ⋆ 𝖵𝑗−1 → 𝖵𝑓 (0) ⋆⋯ ⋆ 𝖵𝑓 (𝑖−1),

and if 𝑔 ∈ N(𝑘, 𝑖), ℎ ∈ N(𝑚, 𝑛), we have

s
𝑓◦𝑔
𝖵0,…,𝖵𝑗−1

= s
𝑔
𝖵𝑓 (0),…,𝖵𝑓 (𝑖−1)

◦s𝑓𝖵0,…,𝖵𝑗−1
,

s
𝑓+𝑔
𝖵0,…,𝖵𝑗+𝑛−1

= s
𝑓
𝖵0,…,𝖵𝑗−1

⋆ sℎ𝖵𝑗 ,…,𝖵𝑗+𝑛−1
.

Example 1.1.4.5. Anℕ-monoidal category is a plain monoidal
category ⇝ “planar (= nonsymmetric) operads”.

Example 1.1.4.6. An 𝕊-monoidal category is a symmetric
monoidal category ⇝ “symmetric operads”.

Example 1.1.4.7. A little thought tells you that an 𝔽 -monoidal
category is the same as a cartesian category: a symmetric
monoidal category is cartesian if and only if every object is
in a unique way a coalgebra and all morphisms are coalgebra
morphisms. In terms of the 𝔽 -monoidal structure, the co-
product (“universal copying”) is the morphism s𝑚𝖵∶ 𝖵 → 𝖵⋆𝖵,
where 𝑚∶ 2 → 1 maps both 0, 1 to 0, and the counit (“univer-
sal deletion”) is s𝑒𝖵∶ 𝖵 → 𝖨, where 𝑒∶ 0 → 1 is the initial map
⇝ “cartesian operads (= clones = Lawvere theories)”. See
e.g. [12] for details.

Assumption 1.1.4.8. C and D are N-monoidal categories.

Caveat 1.1.4.9. C is anyway assumed to be 𝕊-monoidal,
otherwise some of the definitions of an operad given below
don’t make sense. However, one still might choose N= ℕ;
then the operad 𝖮 lives in a symmetric monoidal category C

but one does not use this in the “defining equations” of 𝖮.

MSc Topic 1.1.4.10. This is by far not the most general
setup that is studied, see e.g. [1, 2, 4, 8, 9, 10, 21] for
some ideas where this is going. For starters, N could come
with a monoidal functor 𝗎∶ N→ 𝔽 rather than an inclusion;
this assigns to a symmetry 𝑓 ∈ N(𝑥, 𝑦) an underlying map
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𝗎(𝑓 ) ∈ 𝔽 (𝑖, 𝑗), and the corresponding natural transformation
is a morphism s

𝑓
𝖵0,…,𝖵𝑗−1

∶ 𝖵0⋆⋯⋆𝖵𝑗−1 → 𝖵𝗎(𝑓 )(0)⋆⋯⋆𝖵𝗎(𝑓 )(𝑖−1)..
This is needed e.g. when adding braided monoidal categories
to the picture, where N is the braid category 𝔹 which is like
𝕊, but with the braid group 𝐵𝑖 replacing 𝑆𝑖. The functor 𝗎 is
given by the group quotients 𝐵𝑖 → 𝑆𝑖. However, one can also
consider situations in which the tensorands are not just 𝑗
objects that are arranged in a linear order. So 𝔽 could be re-
placed e.g. by categories of manifolds, see e.g. [3]. Once one
generalises the setup in this way, one needs more conditions
that we will mention briefly when we have enough material
to explain them. In the classical approach of Kelly (Max, not
Maggs), N should be a club. This defines a 2-monad 𝔎N on
𝐂𝐚𝐭 whose 2-algebras are N-monoidal categories. In partic-
ular, N can be recovered as the free N-monoidal category
𝔎N(𝟏) on a single generator.

MSc Topic 1.1.4.11. It might be sufficient to demand at least
in some approaches that there is a functor N × D → D,
(𝑛,𝑋) ↦ 𝑋⋆𝑛 satisfying this or that instead of a fully fledged
N-monoidal structure.

MSc Topic 1.1.4.12. In which generality can we Jazz up
ℕ,𝕊, 𝔽 to make them C-enriched?

1.2. Operads.

1.2.1. Approach I and II. I think this is the most elementary
and immediate one, so I begin with this; the idea is to make
sense of the following picture:

𝜑

6𝜓

543

21

Figure 1. 𝜑◦4,3𝜓 (𝑝 = 4, 𝑞 = 3)
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Idea 1.2.1.1. An (N-)operad (in C) is a functor

𝖮∶ Nop → C

together with morphisms

◦𝑝,𝑖∶ 𝖮(𝑝)⊗ 𝖮(𝑞) → 𝖮(𝑝 + 𝑞 − 1), 𝑖 = 1,… , 𝑝

satisfying a unitality axiom (there is a unary operation id ∈
𝖮(1) that is an identity for all ◦𝑝,𝑖; just as with 𝕂-algebra, some
would drop this and consider also nonunital operads), and
the associativity axiom

(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 =

⎧

⎪

⎨

⎪

⎩

(𝜑◦𝑝,𝑗𝜒)◦𝑝+𝑟−1,𝑖+𝑟−1𝜓 𝑗 < 𝑖,
𝜑◦𝑝,𝑖(𝜓◦𝑞,𝑗−𝑖+1𝜒) 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑞 − 1,
(𝜑◦𝑝,𝑗−𝑞+1𝜒)◦𝑝+𝑟−1,𝑖𝜓 𝑖 + 𝑞 ≤ 𝑗.

Furthermore, one requires the ◦𝑝,𝑖 to be compatible with
morphisms in N, see 1.2.1.5 and 1.2.1.6 below.

Definition 1.2.1.2. We call 𝜑 ∈ 𝖮(𝑛) an 𝑛-ary operation in 𝖮.

Remark 1.2.1.3. Note that in the associativity axiom, the
symmetry s of Centers where 𝜓 and 𝜒 change places: just as
you need a symmetric monoidal category to enrich monoidal
categories, you need it to define operads. So when C =
𝐆𝐫𝐌𝐨𝐝𝕂 is the category of graded vector spaces, the above
formulas suppress signs (−1)|𝜓||𝜒| in cases 1 and 3.

Caveat 1.2.1.4. Some people draw resp. read pictures up-
side down, some from right to left, some do both and then
the indices in the associativity axiom change. Besides this
convention on how to order the inputs of an 𝑛-ary operation,
there is the convention on how to order the operations that
are composed (whether Figure 1 depicts 𝜑◦4,3𝜓 or 𝜓◦4,3𝜑). In
this, we stick to the traditional convention on compositions
of functions. The abstract Approaches III - VI below avoid
these troubles.

Equivalently (assuming unitality), one may define an operad
as a functor 𝖮∶ Nop → C plus morphisms

◦𝑖1,…,𝑖𝑛∶ 𝖮(𝑛)⊗ 𝖮(𝑖1)⊗⋯⊗ 𝖮(𝑖𝑛) → 𝖮(𝑖1 +⋯ + 𝑖𝑛)

whose axioms are derived from pictures such as the following:
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𝜑

𝜓3

65

𝜓2

432

𝜓1

1

Figure 2. 𝜑◦1,3,2[𝜓1 ⊗𝜓2 ⊗𝜓3]
The translation between Approaches I and II is given by

𝜑◦𝑝,𝑖𝜓 ≔ 𝜑◦1,…,1,𝑞,1,…,1[id⊗⋯⊗ id⊗𝜓 ⊗ id⊗⋯⊗ id]
respectively

𝜑◦𝑖1,…,𝑖𝑛[𝜓1 ⊗⋯⊗𝜓𝑟] ≔ (𝜑◦𝑝,1𝜓1)◦𝑝+𝑖1−1,𝑖1+1𝜓2 ⊗⋯

Idea 1.2.1.5. Let us use Approach II to discuss the assump-
tion that the composition operations in the operad are com-
patible with the symmetries prescribed by N. There are two
distinct topics to discuss, and we first consider symmetries
acting on the 𝜓𝑟: for a morphism 𝑓 ∈ N(𝑝, 𝑞), we write 𝖮(𝑓 )
as a right action,

𝖮(𝑓 )∶ 𝖮(𝑞) → 𝖮(𝑝), 𝜑↦ 𝜑⊲𝑓.

Figure 2 suggests to demand

(𝜑◦𝑖1,…,𝑖𝑛[𝜓1 ⊗⋯⊗𝜓𝑛])⊲(𝑓1 +…+ 𝑓𝑛)
= 𝜑◦𝑗1,…,𝑗𝑛[(𝜓1⊲𝑓1)⊗⋯⊗ (𝜓𝑛⊲𝑓𝑛)]

for all 𝑓𝑟 ∈ N(𝑗𝑟, 𝑖𝑟), 𝑟 = 1,… , 𝑛. Since we demanded that
s𝑓 ⊗ sℎ = d𝑓+ℎ, this can also be rewritten as

(𝜑◦𝑖1,…,𝑖𝑛[𝜓1 ⊗⋯⊗𝜓𝑛])⊲(𝑓1 +…+ 𝑓𝑛)
= 𝜑◦𝑗1,…,𝑗𝑛[(𝜓1 ⊗⋯⊗𝜓𝑛)⊲(𝑓1 +⋯ + 𝑓𝑛)].

So these symmetries simply tell us that the operadic compo-
sition is right N-linear.

Idea 1.2.1.6. When it comes to symmetries acting on 𝜑,
things get a bit more interesting: Figure 2 also suggests to
demand that for 𝑔 ∈ N(𝑚, 𝑛), we have

(𝜑⊲𝑔)◦𝑖1,…,𝑖𝑚[𝜓1 ⊗⋯⊗𝜓𝑛] = 𝜑◦𝑖1,…,𝑖𝑚𝑔 ⊳ [𝜓1 ⊗⋯⊗𝜓𝑚],



ADDITIVITY FOR BEGINNERS 11

where we must make sense of 𝑔 ⊳ [𝜓1⊗⋯⊗𝜓𝑛], and we want
that this can be expressed as (𝜓𝑔(1) ⊗⋯⊗𝜓𝑔(𝑛))⊲𝑔̂ for some
𝑔̂ that depends on 𝑔 but also the arities of the 𝜓𝑖. Here is a
picture that explains the situation; therein, we are considering
(𝛼⊲𝑔)◦2,3[𝛽 ⊗ 𝛾], where 𝛼, 𝛾 ∈ 𝖮(3), 𝛽 ∈ 𝖮(2), and 𝑔 ∈ 𝔽 (3, 2)
is given by 𝑔(0) = 𝑔(2) = 0, 𝑔(1) = 1.

𝛼

𝛽 𝛾

=

𝛼

𝛽 𝛾 𝛽

The way how to get from 𝑔 to 𝑔̂ is what Kelly’s club structure
of N is about. At the end, this all means that we need the
composition operation to be a morphism

◦𝑖1,…,𝑖𝑛∶ 𝖮(𝑛)⊗N [𝖮(𝑖1)⊗⋯⊗ 𝖮(𝑖𝑛)] → 𝖮(𝑖1 +⋯ + 𝑖𝑛).

MSc Topic 1.2.1.7. Write this all up in a Hopf algebraic lan-
guage, N is the Hopf algebra, C is a bimodule? The above is
somehow about the centre in a bimodule category.

Remark 1.2.1.8. Depending on one’s taste one might prefer
to give the inputs of operations names as in [13, Definition 16].
For example, you could replace 𝕊 by the category of all totally
ordered finite sets with all bijections as morphisms. Then
Figure 2 shows 𝜑◦1,3,2[𝜓1⊗𝜓2⊗𝜓3] ∈ 𝖮([1, 2, 3, 4, 5, 6]), where
[...] denotes an ordered set. If 𝑔 = (123) ∈ 𝑆3 is the cyclic
permutation of the inputs of 𝜓 , then the figure suggests
that (𝜑⊲𝑔)◦3,2,1[𝜓2 ⊗ 𝜓3 ⊗ 𝜓1] ∈ 𝖮([2, 3, 4, 5, 6, 1]) should be
“the same” operation once one applies the appropriate block
permutation of the 6 inputs. For this to make sense we need
a functor 𝗎∶ N→ 𝕊 as mentioned in 1.1.4.10 which tells us
how to reorder the 𝜓𝑟 in this process. Note that the input
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of an 𝑛-ary operation is not the object 𝖵0 ⊗ ⋯ ⊗ 𝖵𝑛, it is
the object with its decomposition into those factors. I think
this is where one should think about slice categories and
factorisation homology.

1.2.2. Examples.

Example 1.2.2.1. The endomorphism operad 𝖤𝗇𝖽𝑋 of an
object 𝑋 in D has

𝖤𝗇𝖽𝑋(𝑛) ≔ D(𝑋⋆𝑛, 𝑋)

with

𝜑◦𝑝,𝑖𝜓 ≔ 𝜑◦(id𝑋⋆𝑖−1 ⋆ 𝜓 ⋆ id𝑋⋆𝑝−𝑖).
For 𝖤𝗇𝖽𝑋 to be of type N, D must be a priori an N-monoidal
category. However, this is not an if and only if, it might
happen that 𝖤𝗇𝖽𝑋 has more symmetries than one expects.
For example, in [12] we have shown that 𝖤𝗇𝖽𝑋 can be naturally
a cartesian operad even if D is not cartesian.

Definition 1.2.2.2. If 𝖮 is any operad, then an 𝖮-algebra
structure on𝑋 is an operad morphism 𝛼∶ 𝖮 → 𝖤𝗇𝖽𝑋 , that is, a
natural transformation of functors Nop → C that is compatible
with the ◦𝑝,𝑖.

Example 1.2.2.3. For N= ℕ, the planar associative operad
𝖠𝗌𝗌ℕ is given by setting for all 𝑛

𝖠𝗌𝗌ℕ(𝑛) ≔ 𝟣,

with all ◦𝑝,𝑖 being the canonical isomorphism 𝟣⊗ 𝟣 ≅ 𝟣. An
𝖠𝗌𝗌ℕ-algebra is a unital associative algebra (a monoid) in D.

Example 1.2.2.4. When N= 𝕊 and we make all 𝖲𝑛 act trivially
on 𝟣, we obtain the commutative operad

𝖢𝗈𝗆𝗆(𝑛) ≔ 𝟣.

That is, if we forget the trivial symmetry, the symmetric op-
erad 𝖢𝗈𝗆𝗆 becomes the planar associative operad. But we
don’t, and that a 𝖢𝗈𝗆𝗆-algebra structure 𝛼∶ 𝖢𝗈𝗆𝗆 → 𝖤𝗇𝖽𝑋
is in particular a natural transformation of functors 𝕊op → C

shows that the 𝖢𝗈𝗆𝗆-algebras are precisely the commutative
algebras in D; this structure could not have been defined
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when N = ℕ. However, we may now define the symmetric
associative operad 𝖠𝗌𝗌𝕊 by

𝖠𝗌𝗌𝕊(𝑛) ≔ 𝖲𝑛

and then 𝖠𝗌𝗌𝕊-algebras are again just algebras in D. Note
Florian was considering this symmetric associative operad,
not the planar one.

Remark 1.2.2.5. There are also cyclic and modular operads,
but this is about duality in D, and about the spatial arrange-
ment of the pictures that represent compositions that could
be drawn not in the plane but on some oriented compact
smooth manifold of dimension 2 (compare spherical and
cylindrical monoidal categories). Here 𝗎 is a functor to the
category of 2-dimensional oriented surfaces I suppose.

MSc Topic 1.2.2.6. In the theory of simplicial sets, one can
turn any set 𝑋 into a simplicial set with 𝑋𝑛 = 𝑋 and all
simplicial operators being identities; this is the “discrete
simplicial set”, when passing to the geometric realisation you
get the discrete topology on 𝑋. 𝖢𝗈𝗆𝗆 and 𝖠𝗌𝗌ℕ are like this.
What does this mean? What happens for other N?

1.2.3. Approach III and IV. Recall that we assume

D(𝐶 ⋅𝑋, 𝑌 ) ≅ C(𝐶, D(𝑋, 𝑌 )), 𝐶 ∈ C, 𝑋, 𝑌 ∈ D.

Idea 1.2.3.1. In a concrete setting, a sequence of morphisms

𝛼𝑛∶ 𝐶𝑛 → D(𝑋⋆𝑛, 𝑋) = 𝖤𝗇𝖽𝑋(𝑛), 𝑛 ≥ 0
in C thus corresponds to a sequence of morphisms

𝛼̂𝑛∶ 𝐶𝑛 ⋅𝑋⋆𝑛 → 𝑋
in D. If 𝐶𝑛 = 𝖮(𝑛) for a functor 𝖮∶ Nop → C and the 𝛼𝑛
are the components of a natural transformation, then the 𝛼̂𝑛
assemble into a single morphism 𝛼̂∶ 𝖮̂(𝑋) → 𝑋 in D, where
𝖮̂ is the endofunctor

𝖮̂∶ D→ D, 𝑋 ↦ 𝖮 ⋅N𝑋
⋆− =

∑𝑛∈N
𝖮(𝑛) ⋅𝑋⋆𝑛,

where the right hand side is a coend. Joyal (I think) called this
an analytic functor as it looks like a power series. In the world
of algebraic operads, 𝖮 would be called an 𝕊-module and 𝖮̂
the associated Schur functor [16]. When 𝖮 is an operad, then
𝖮̂ is a monad.



14 ULI

In the down to earth cases I care about this is an if and only
if; even if it isn’t, I find this approach is really nice as it works
in greater generality and it incorporates 1.1.4.11 and 1.2.1.6
and many other ideas into the formalism in a neat way.

Example 1.2.3.2. For 𝖮 = 𝖠𝗌𝗌ℕ, 𝖮̂(𝑋) is the tensor algebra
⨁

𝑛≥0𝑋⋆𝑛 which is the free associative algebra on 𝑋. For
𝖮 = 𝖢𝗈𝗆𝗆, 𝖮̂(𝑋) is the free commutative algebra on 𝑋, that
is, the symmetric algebra. The free Lie algebra is a more
subtle topic, see e.g [22].

One can also carry the above over to a monoidal product on
the functor category [Nop, C] (the composite or substitution
product ◦). Just as groups are nowadays defined as abstract
groups and not as transformation groups, I’d use this as
definition:

Definition 1.2.3.3. An operad is a monoid in ([Nop, C], ◦, 𝛿0).

This has the advantage that we do not need to introduce
any category D at all but study the operad in its own right.
However, I am more interested in 𝖮-algebras, hence move
on without explaining this approach in detail.

Example 1.2.3.4. In [21], Shulman indicates that you can
go way beyond our setting: that an operation has a finite
number of inputs is irrelevant and at least for C = 𝐒𝐞𝐭 he
claims you could actually also take N= Cop. Then [Nop, C] is
the category of endofunctors on C and ◦ becomes just the
composition, so an operad is a monad on C. This is a bit as
with rings vs. algebras: rings are special 𝕂-algebras (namely
𝕂 = ℤ) and not the other way round.

1.2.4. Approach V and VI. Florian worked from the start with
multicategories (= coloured operads). Then an operad is just
a multicategory with a single object. I won’t need this, but
recall that to any monoidal category D Florian associated the
multicategory 𝖤𝗇𝖽D represented by D (the endomorphism
operad is the case of a monoidal category that is monoidally
generated by one object). 𝖤𝗇𝖽 is right adjoint to the free
monoidal category functor 𝖥 and allegedly (at least Tony,
Zbiggi and Gemini seem to agree on this), the unit of this
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adjunction is an equivalence D≅ 𝖥(𝖤𝗇𝖽D): a monoidal cat-
egory can be reconstructed from the associated (coloured)
operad.

Finally, Florian told us how to associate to an operad 𝖮
its category of operators 𝖮⊗ which comes naturally with a
Grothendieck opfibration whose codomain was in Florian’s
talk finite pointed sets.

MSc Topic 1.2.4.1. As far as I understand Shulman [21], the
codomain is in general the category of operators (𝖤𝗇𝖽N)⊗
of the operad associated to N. For N = ℕ, this is the op-
posite of the simplicial category Δ, so a planar operad can
be characterised as a Grothendieck opfibration 𝖮⊗ → Δop

(see Lurie’s collected works, e.g. [17]). The advantage of this
approach is that it is now relatively straightforward to replace
categories by ∞-categories in order to define ∞-operads.

The construction of 𝖮⊗ looks as if it could be the free
monoidal category 𝖥(𝖮), one forms forests and the fibre func-
tor keeps track of their decompositions into trees (which in
the symmetric case might be entangled and in the cartesian
case even merge or diverge), but it seems things are more
subtle: one first takes the free semicartesian operad on the
given one, so one upgrades N if necessary (not sure what
happens if that was already 𝔽 ), and only then takes the free
semicartesian monoidal category on this semicartesian op-
erad. So for semicartesian multicategories, 𝖥(𝖮) = 𝖮⊗ as is
also stated on nLab [18].

1.3. Operads with multiplication.

1.3.1. Definition.

Assumption 1.3.1.1. For the time being, N= ℕ.

Definition 1.3.1.2. An operad with multiplication is an operad
𝖮 together with an operad morphism 𝖠𝗌𝗌ℕ → 𝖮.

Remark 1.3.1.3. In C = 𝐒𝐞𝐭,𝐓𝐨𝐩,𝐌𝐨𝐝𝕂, this is an operad
together with an element 𝜇 ∈ 𝖮2 such that 𝜇◦2,1𝜇 = 𝜇◦2,2𝜇.

Remark 1.3.1.4. Gerstenhaber introduced this under the
name comp algebra and called 𝜇 the distinguished element.

MSc Topic 1.3.1.5. As a continuation of 1.2.2.6, should one
think of a pointed operad?
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Remark 1.3.1.6. 𝖠𝗌𝗌ℕ → 𝖮 induces a forgetful functor from
𝖮-algebras to associative algebras. So 𝖮-algebras are asso-
ciative algebras with more structure added.

1.3.2. Examples. The historic example is the following:

Example 1.3.2.1. Turning the endomorphism operad 𝖤𝗇𝖽𝑋
into an operad with multiplication is the same as turning
𝑋 into a monoid. This is the key example considered by
Gerstenhaber in C= D= 𝐌𝐨𝐝𝕂 where 𝑋 is simply a unital
associative 𝕂-algebra. However, recall the example C =
𝐌𝐨𝐝𝕂, D = 𝐌𝐨𝐝𝑅𝑒 where 𝑅 is a 𝕂-algebra. Then 𝑋 is a
𝕂-algebra with a 𝕂-algebra morphism 𝑅→ 𝑋 (an 𝑅-ring).

Example 1.3.2.2. If 𝐻 is a Hopf algebra over 𝕂 (C = D =
𝐌𝐨𝐝𝕂), define

𝖢(𝑛) ≔ 𝐌𝐨𝐝𝕂(𝐻⊗𝑛,𝕂)
and for each 𝜑 ∈ 𝖢(𝑝) the map

𝐷𝜑∶ 𝐻⊗𝑝 → 𝐻, ℎ1 ⊗⋯⊗ ℎ𝑝 ↦ 𝜑(ℎ1(1),… , ℎ𝑝(1))ℎ
1
(2) ⋯ℎ𝑝(2).

Then 𝖢 becomes an operad with multiplication

𝜇 = 𝜀𝐻𝜇𝐻

where 𝜇𝐻∶ 𝐻 ⊗𝐻 → 𝐻 is the multiplication in 𝐻 and 𝜀𝐻 is
its counit, and with

(𝜑◦𝑝,𝑖𝜓)(ℎ1,… , ℎ𝑝+𝑞−1)
≔ 𝜑(ℎ1,… , ℎ𝑖−1, 𝐷𝜓 (ℎ𝑖,… , ℎ𝑖+𝑞−1), ℎ𝑖+𝑞,… , ℎ𝑝+𝑞−1).

Note that 𝜇𝐻 = 𝐷𝜇. If 𝐴 is a left 𝐻-comodule algebra, then
generalising the formula for 𝐷𝜑 to

𝛼∶ 𝖢(𝑛) → 𝖤𝗇𝖽𝐴(𝑛), 𝛼(𝜑)(𝑎1,… , 𝑎𝑛) ≔ 𝜑(𝑎1(−1),… , 𝑎𝑛(−1))𝑎
1
(0)⋯ 𝑎𝑛(0)

turns 𝐴 into a 𝖢-algebra. Somehow the associative operad
gets twisted by 𝖢.

Remark 1.3.2.3. 𝖢 is the 𝕂-linear dual of the (unnormalised)
bar construction of𝐻 , so this carries the structure of a cosim-
plicial 𝕂-module whose cohomology is Ext𝐻 (𝕂,𝕂) and we
will link this to the operad structure in a minute. One could
also work directly with the bar construction and give it a co-
operad structure which is maybe much more pleasing and
enlightening in the context of bar-cobar duality. Note also all
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this extends to Hopf algebroids and then includes the case
of the endomorphism operad covered by Gerstenhaber [11].

2. Gerstenhaber algebras up to homotopy

Here I explain how (algebraic) operads become (graded)
pre-Lie algebras and operads with multiplication become
Gerstenhaber algebras up to homotopy.

2.1. Pre-Lie algebras.

2.1.1. Definition.

Assumption 2.1.1.1. N= 𝕊, so D is a symmetric monoidal
category and “operad” means “symmetric operad”.

Remark 2.1.1.2. Any associative product ◦̄ on a 𝕂-module
𝑋 turns 𝑋 into a Lie algebra with respect to the commutator
[𝑥, 𝑦] ≔ 𝑥◦̄𝑦−𝑦◦̄𝑥, and like all such forgetful functors between
types of algebra this can be expressed in terms of a morphism
of symmetric operads 𝖫𝗂𝖾 → 𝖠𝗌𝗌𝕊. We now generalise this.

Definition 2.1.1.3. A pre-Lie (aka Vinberg) algebra structure
on 𝑋 ∈ D is a binary operation ◦̄∶ 𝑋 ⋆𝑋 → 𝑋 that satisfies

𝛼(𝑥, 𝑦, 𝑧) = 𝛼(𝑥, 𝑧, 𝑦),

where 𝛼(𝑥, 𝑦, 𝑧) ≔ (𝑥◦̄𝑦)◦̄𝑧 − 𝑥◦̄(𝑦◦̄𝑧) is the associator of ◦̄.

Remark 2.1.1.4. Obviously, there is a symmetric operad
𝖯𝗋𝖾𝖫𝗂𝖾 whose algebras are pre-Lie algebras. Just as with 𝖫𝗂𝖾,
this only can be defined if Callows us to add (e.g. C= 𝐌𝐨𝐝𝕂).

Proposition 2.1.1.5. The commutator of a pre-Lie algebra
structure is a Lie algebra structure.

Proof. The skewsymmetry is given by definition, the question
is whether the Jacobi identity is satisfied. Direct computation
shows that

[𝑥1, [𝑥2, 𝑥3]] + [𝑥2, [𝑥3, 𝑥1]] + [𝑥3, [𝑥1, 𝑥2]]

=
∑

𝜎∈𝑆3

(−1)|𝜎|𝛼(𝑥𝜎(1), 𝑥𝜎(2), 𝑥𝜎(3)),

which vanishes if 𝛼 is symmetric in the last two entries. □
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Example 2.1.1.6. When C= 𝐆𝐫𝐌𝐨𝐝𝕂, “commutator” means
“graded commutator”, so the true formula for the commutator
without suppressed signs is 𝑥◦̄𝑦− (−1)|𝑥||𝑦|𝑦◦̄𝑥. Similarly, “Lie
algebra” means “graded Lie algebra”, so

[𝑥, 𝑦] = −(−1)|𝑥||𝑦|[𝑦, 𝑥]

and there are also signs in the Jacobi identity

[𝑥, [𝑦, 𝑧]] + (−1)(|𝑥|+|𝑦|)|𝑧|[𝑧, [𝑥, 𝑦]] + (−1)|𝑥|(|𝑦|+|𝑧|)[𝑦, [𝑧, 𝑥]] = 0,

which can be neater written as

(−1)|𝑥||𝑧|[𝑥, [𝑦, 𝑧]] + (−1)|𝑦||𝑧|[𝑧, [𝑥, 𝑦]] + (−1)|𝑥||𝑦|[𝑦, [𝑧, 𝑥]] = 0.

Remark 2.1.1.7. The converse of 2.1.1.5 is not true. In fact,
the proof shows that we also obtain a Lie bracket if 𝛼(𝑥, 𝑦, 𝑧)
is symmetric in 𝑥, 𝑦 or if it is symmetric in 𝑥, 𝑧. In particular,
if 𝛼 is the associator of ◦̄, then the associator of the opposite
product 𝑥◦̄op𝑦 = 𝑦◦̄𝑥 is given by 𝛽(𝑥, 𝑦, 𝑧) = 𝛼(𝑧, 𝑦, 𝑥). So ◦̄op

is an example of the variation on pre-Lie algebras where
one demands the associator to be symmetric in the first two
entries. This is related to the convention choice whether
pictures are read from left to right or from right to left as
mentioned in 1.3.1.6. As yet another example, if ◦̄ itself is a
Lie bracket, then so is the its commutator, but here Jacobi
tells us that the associator is rather symmetric in 𝑥 and 𝑧.

2.1.2. Examples.

Example 2.1.2.1 (in honour of Julius). Take C = C = D =
𝐌𝐨𝐝𝕂. A connection on the vector fields on an affine scheme,
that is, on the derivations 𝑋 ≔ Der𝕂(𝐴) of a commutative
algebra 𝐴 ∈ D (or more generally on a Lie-Rinehart algebra
𝑋 over 𝐴) is a morphism

∇∶ 𝑋 ⊗𝑋 → 𝑋, 𝑥 ⊗ 𝑦 ↦ ∇𝑥𝑦

such that ∇𝑎𝑥𝑦 = 𝑎∇𝑥𝑦, ∇𝑥(𝑎𝑦) = 𝑥(𝑎)𝑦 + 𝑎∇𝑥𝑦 holds for all
𝑎 ∈ 𝐴 (∇𝑥𝑦 is referred to as the covariant derivative of 𝑦 along
𝑥 with respect to the connection). The connection is flat if

∇𝑥(∇𝑦𝑧) − ∇𝑦(∇𝑥𝑧) = ∇[𝑥,𝑦]𝑧

and torsionless if

∇𝑥𝑦 − ∇𝑦𝑥 = [𝑥, 𝑦],
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and one easily shows that 𝑥◦̄𝑦 ≔ ∇𝑦𝑥 is a pre-Lie algebra
structure if ∇ is flat and torsion-less.

Example 2.1.2.2. This is a warm-up for 2.1.2.6 below where
I give a full proof. Take C= D = 𝐌𝐨𝐝𝕂, let 𝖳 be the vector
space with a basis given by all rooted trees (non-planer, no
ordering of vertices), and define for trees 𝑥, 𝑦

𝑥◦̄𝑦 ≔
∑

𝑖∈𝑉 (𝑥)
𝑥◦𝑖𝑦

where 𝑖 runs through all vertices (not just leaves!) of 𝑥 and
𝑥◦𝑖𝑦 is obtained by attaching the root of 𝑦 to the vertex 𝑖 as
a new branch (as the branches of a vertex are not ordered,
the question where to attach does not arise) . Then (𝖳, ◦̄) is
the free pre-Lie algebra 𝖯𝗋𝖾𝖫𝗂𝖾(𝟣) with a single generator.

Maybe the following only holds in characteristic 0, have
forgotten:

Theorem 2.1.2.3 ([15]). Let𝐻 =
⨁

𝑖≥0(𝑋⊗𝑖)𝑆𝑖 be the symmet-
ric coalgebra on a vector space 𝑋 (the coffee cocommutative
conilpotent coalgebra on 𝑋 that consists of all symmetric
tensors over 𝑋 with the deconcatenation coproduct). Then
the pre-Lie algebra structures on 𝑋 correspond bijectively
to right-sided Hopf algebra structures on 𝐻 , meaning those
for which all

⨁

𝑖≤𝑛(𝑋⊗𝑖)𝑆𝑖 , 𝑛 = 0, 1, 2,… are right ideals of 𝐻 .

Example 2.1.2.4. The Hopf algebra arising from rooted trees
has been considered by Connes–Kreimer and has been gen-
eralised to a Hopf algebra whose (co)generators are labelled
by Feynman diagrams. This yields a Hopf algebra approach
to renormalisation.

MSc Topic 2.1.2.5. More a topic of Oliver: The Butcher group.

Proposition 2.1.2.6. Every planar (i.e. nonsymmetric) operad
𝖮 becomes a pre-Lie algebra with

𝜑◦̄𝜓 ≔
𝑝
∑

𝑖=1
𝜑◦𝑝,𝑖𝜓, 𝜑 ∈ 𝖮(𝑝).

Proof. The associator is given by

𝛼(𝜑,𝜓, 𝜒) =
𝑝
∑

𝑖=1

𝑝+𝑞−1
∑

𝑗=1
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 −

𝑞
∑

𝑗=1

𝑝
∑

𝑖=1
𝜑◦𝑝,𝑖(𝜓◦𝑞,𝑗𝜒)
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=
𝑝
∑

𝑖=1

𝑖−1
∑

𝑗=1
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 +

𝑝
∑

𝑖=1

𝑖+𝑞−1
∑

𝑗=𝑖
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒

+
𝑝
∑

𝑖=1

𝑝+𝑞−1
∑

𝑗=𝑖+𝑞
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 −

𝑝
∑

𝑖=1

𝑞
∑

𝑗=1
𝜑◦𝑝,𝑖(𝜓◦𝑞,𝑗𝜒)

=
𝑝
∑

𝑖=1

𝑖−1
∑

𝑗=1
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 +

𝑝
∑

𝑖=1

𝑝+𝑞−1
∑

𝑗=𝑖+𝑞
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒

=
𝑝
∑

𝑖=1

𝑖−1
∑

𝑗=1
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 +

𝑝−1
∑

𝑖=1

𝑝+𝑞−1
∑

𝑗=𝑖+𝑞
(𝜑◦𝑝,𝑗−𝑞+1𝜒)◦𝑝+𝑞−1,𝑖𝜓

=
𝑝
∑

𝑖=1

𝑖−1
∑

𝑗=1
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 +

𝑝−1
∑

𝑖=1

𝑝
∑

𝑘=𝑖+1
(𝜑◦𝑝,𝑘𝜒)◦𝑝+𝑟−1,𝑖𝜓

=
𝑝
∑

𝑖=1

𝑖−1
∑

𝑗=1
(𝜑◦𝑝,𝑖𝜓)◦𝑝+𝑞−1,𝑗𝜒 +

𝑝
∑

𝑘=1

𝑘−1
∑

𝑖=1
(𝜑◦𝑝,𝑘𝜒)◦𝑝+𝑟−1,𝑖𝜓,

which is manifestly symmetric in 𝜓, 𝜒 . Note 𝛼 simply puts 𝜓
and 𝜒 into all pairs of inputs of 𝜑 and sums up. □

Reappraisal 2.1.2.7. A planar operad is by very definition
also a graded object in C with the arity of 𝜑 ∈ 𝖮(𝑝) being
its degree. However, the ◦𝑝,𝑖 are not compatible with this
degree; if we want them to be, we should rather consider the
desuspension of 𝖮 and hence define

|𝜑| ≔ 𝑝 − 1, 𝜑 ∈ 𝖮(𝑝)

as we then have for 𝜑 ∈ 𝖮(𝑝), 𝜓 ∈ 𝖮(𝑞)

|𝜑◦𝑝,𝑖𝜓| = (𝑝 + 𝑞 − 1) − 1 = 𝑝 − 1 + 𝑞 − 1 = |𝜑| + |𝜓|.

So we associate to every operad 𝖮 ∈ C the graded presheaf
𝖮̄ ∈ [Nop,𝐆𝐫(C)] given by

𝖮̄(𝑛)(𝑗) ≔

{

𝖮(𝑛) 𝑗 = 𝑛 − 1,
𝟢 𝑗 ≠ 𝑛 − 1.

Is 𝖮̄ an operad in 𝐆𝐫(C)? Almost, but the symmetry in the
associativity axiom is the one from C, not the one from 𝐆𝐫(C)
that involves the sign (−1)|𝜓||𝜒| in cases 1 and 3. However, we
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can fix this (assuming that we have an operation 𝑥↦ −𝑥 in
C of course), by also redefining

𝜑◦̄𝑝,𝑖𝜓 ≔ (−1)|𝜓|(𝑖−1)𝜑◦𝑝,𝑖𝜓.

I memorise this sign by keeping in mind that when evaluating
𝜑◦𝑝,𝑖𝜓 on 𝑥1 ⊗⋯⊗ 𝑥𝑝+𝑞−1, the 𝜓 has to first jump over 𝑖 − 1
tensor components. And with this sign added, the associa-
tivity rules incorporate the correct signs, which, if I do not
suppress them, read

(𝜑◦̄𝑝,𝑖𝜓)◦̄𝑝+𝑞−1,𝑗𝜒 =

⎧

⎪

⎨

⎪

⎩

(−1)(𝑞−1)(𝑟−1)(𝜑◦̄𝑝,𝑗𝜒)◦̄𝑝+𝑟−1,𝑖+𝑟−1𝜓 𝑗 < 𝑖,
𝜑◦̄𝑝,𝑖(𝜓 ◦̄𝑞,𝑗−𝑖+1𝜒) 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑞 + 1,
(−1)(𝑞−1)(𝑟−1)(𝜑◦̄𝑝,𝑗−𝑞+1𝜒)◦̄𝑝+𝑟−1,𝑖𝜓 𝑖 + 𝑞 ≤ 𝑗.

Long story short:

Proposition 2.1.2.8. If (𝖮, ◦𝑝,𝑖) is a planar operad in C, then
(𝖮̄, ◦̄𝑝,𝑖) is a planar operad in 𝐆𝐫(C).

Remark 2.1.2.9. This degree shift is initially confusing, but
can be seen in many other constructions. For example, when
taking a projective resolution 𝑃 of an object 𝑋 in an abelian
category D, we have an exact sequence

0 → 𝑃𝑑 → … → 𝑃0 → 𝑋 → 0

where 𝑃 appears to be shifted in degree by 1. This is how the
operadic degree shift sneaks in when one takes the Yoneda
approach to Gerstenhaber algebras [19, 20, 6].

Corollary 2.1.2.10. If 𝖮 is a planar operad in C, then 𝖮̄ is a
pre-Lie algebra in 𝐆𝐫(C) via

𝜑◦̄𝜓 ≔
𝑝
∑

𝑖=1
𝜑◦̄𝑝,𝑖𝜓.

Definition 2.1.2.11. We denote the induced (graded!) Lie
bracket on 𝖮̄ by {−,−} and call this the Gerstenhaber bracket.

Example 2.1.2.12. If 𝜇 ∈ 𝖮(2) is a binary operation, then

𝜇◦̄𝜇 = 𝜇◦2,1𝜇 − 𝜇◦2,2𝜇,

so 𝜇 is associative iff it is self-parallel with respect to the
“connection” given by ◦̄.
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Remark 2.1.2.13. In [11] we have worked with ◦̄op, hence
there is a sign (−1)|𝜑||𝜓| in front of the definition.

Remark 2.1.2.14. If one wants to avoid the introduction of
𝖮̄, one can view 𝖮 as a graded Lie algebra whose Lie bracket
is a morphism of degree 1, {−,−} ∈ 𝗁𝗈𝗆𝐆𝐫(C)(𝖮⊗ 𝖮,𝖮)(1).

2.2. Brace algebras.

2.2.1. Gerstenhaber algebras up to homotopy.

Assumption 2.2.1.1. 𝖮 is a planar operad with multiplication.

MSc Topic 2.2.1.2. What is actually the right assumption
about Chere? I though the involution 𝑥↦ −𝑥 is like a ribbon
category, only symmetric, and 𝐒𝐞𝐭 also has that, with −𝑥 = 𝑥.
But for pre-Lie algebra we need to add. If we demand C to
be additive this is still not right, as we want to add elements
of objects in C. Maybe the best is not to have C at all but
just an additive category D?

Definition 2.2.1.3. The cup product is the binary operation

𝖮(𝑝)⊗ 𝖮(𝑞) → 𝖮(𝑝 + 𝑞), 𝜑 ⌣ 𝜓 ≔ (𝜇◦𝑝,1𝜑)◦𝑝+1,𝑝+1𝜓

The coboundary map on 𝖮 is given by

d≔ {−, 𝜇}∶ 𝖮(𝑛) → 𝖮(𝑛 + 1).

Example 2.2.1.4. If 𝖢(𝑛) = 𝐌𝐨𝐝𝕂(𝐻⊗𝑛,𝕂) is the operad
associated to a Hopf algebra 𝐻 (Example 1.3.2.2), then

(𝜑 ⌣ 𝜓)(ℎ1,… , ℎ𝑝+𝑞)

= 𝜑(ℎ1(1),… , ℎ𝑝(1))𝜓(ℎ
𝑝+1
(1) ,… , ℎ𝑝+𝑞(1) 𝜇(ℎ

1
(2) ⋯ , ℎ𝑝(2), ℎ

𝑝+1
(2) ⋯ℎ𝑝+𝑞(2) )

= 𝜑(ℎ1(1),… , ℎ𝑝(1))𝜓(ℎ
𝑝+1
(1) ,… , ℎ𝑝+𝑞(1) 𝜀

𝐻 (ℎ1(2) ⋯ℎ𝑝+𝑞(2) )

= 𝜑(ℎ1,… , ℎ𝑝)𝜓(ℎ𝑝+1,… , ℎ𝑝+𝑞)

is the product dual to the deconcatenation coproduct on the
bar construction [16] (unnormalised, meaning we do not just
consider the tensor coalgebra of the augmentation ideal ker𝜀
but of all of 𝐻). For 𝜑 ∈ 𝖮(𝑝),

(𝜇◦̄𝜑)(ℎ1,… , ℎ𝑝+1)
= 𝜑(ℎ1,… , ℎ𝑝)𝜀𝐻 (ℎ𝑝+1) + (−1)𝑝−1𝜀𝐻 (ℎ1)𝜑(ℎ2,… , ℎ𝑝+1)
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and

(𝜑◦̄𝜇)(ℎ1,… , ℎ𝑝+1) = 𝜑(ℎ1ℎ2, ℎ3,… , ℎ𝑝)
− 𝜑(ℎ1, ℎ2ℎ3, ℎ4,… , ℎ𝑝)
+… + (−1)𝑝−1𝜑(ℎ1,… , ℎ𝑝ℎ𝑝+1).

Thus
d𝜑 = {𝜑, 𝜇} = 𝜑◦̄𝜇 − (−1)𝑝−1𝜇◦̄𝜑

is the dual of the boundary map of the bar construction,

(d𝜑)(ℎ1,… , ℎ𝑝+1) = −(𝜀𝐻 (ℎ1)𝜑(ℎ2,… , ℎ𝑝+1)−
𝜑(ℎ1ℎ2, ℎ3,… , ℎ𝑝+1) +…)

In particular, d◦d = 0 and the cohomology of the cochain
complex (𝖮,d) is Ext𝐻 (𝕂,𝕂) ∈ 𝐆𝐫𝐌𝐨𝐝𝕂.

We now return to the general case of a planar operad and
show that the above example is paradigmatic. The following
lemmata show that d,⌣ and {−,−} together equip 𝖮 with a
highly nontrivial algebraic structure.

Lemma 2.2.1.5. dd = 0.

Proof.

{{𝜑, 𝜇}, 𝜇} = {𝜑◦̄𝜇 − (−1)|𝜑|𝜇◦̄𝜑, 𝜇}
= (𝜑◦̄𝜇 − (−1)|𝜑|𝜇◦̄𝜑)◦̄𝜇
− (−1)|𝜑|+1𝜇◦̄(𝜑◦̄𝜇 − (−1)|𝜑|𝜇◦̄𝜑)

Recall that 𝜇◦̄𝜇 = 0, so

(𝜑◦̄𝜇)◦̄𝜇 = (𝜑◦̄𝜇)◦̄𝜇 − 𝜑◦̄(𝜇◦̄𝜇) = 𝛼(𝜑, 𝜇, 𝜇),
and this vanishes as the associator is symmetric in the last
two entries and 𝜇 has degree |𝜇| = 1 so symmetric means
antisymmetric in this case. Similarly, the remaining three
terms plus 0 = (𝜇◦̄𝜇)◦̄𝜑 can be rewritten as

𝛼(𝜇, 𝜇, 𝜑) − (−1)|𝜑|𝛼(𝜇, 𝜑, 𝜇)
which also vanishes in view of the symmetry of 𝛼. □

Lemma 2.2.1.6. We have

d(𝜑◦̄𝜓) − 𝜑◦̄d𝜓 − (−1)|𝜓|d𝜑◦̄𝜓
= (−1)|𝜑|+|𝜓|(𝜑 ⌣ 𝜓 − (−1)|𝜑||𝜓|𝜓 ⌣ 𝜑).
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Proof. When we suppress signs, we have

d(𝜑◦̄𝜓) = (𝜑◦̄𝜓)◦̄𝜇 − 𝜇◦̄(𝜑◦̄𝜓),
(d𝜑)◦̄𝜓 = (𝜑◦̄𝜇)◦̄𝜓 − (𝜇◦̄𝜑)◦̄𝜓,
𝜑◦̄d𝜓 = 𝜑◦̄(𝜓 ◦̄𝜇) − 𝜑◦̄(𝜇◦̄𝜓),

so

d(𝜑◦̄𝜓) − 𝜑◦̄d𝜓 − d𝜑◦̄𝜓
= 𝛼(𝜑,𝜓, 𝜇) − 𝛼(𝜑, 𝜇, 𝜓) + 𝛼(𝜇, 𝜑, 𝜓).

Note, however, that with the signs in, we’d rather get

d(𝜑◦̄𝜓) − 𝜑◦̄d𝜓 − (−1)|𝜓|d𝜑◦̄𝜓
= 𝛼(𝜑,𝜓, 𝜇) − (−1)|𝜓|𝛼(𝜑, 𝜇, 𝜓) + (−1)|𝜑|+|𝜓|𝛼(𝜇, 𝜑, 𝜓).

The first line tells us that we should rather think of das acting
from the right; the second line is consistent as an expression
evaluated on𝜑⊗𝜓⊗𝜇. That the associator 𝛼(𝜇, 𝜑, 𝜓) is simply
the (graded) commutator of the cup product follows from the
abstract formula (in the proof of Proposition 2.1.2.6). □

Remark 2.2.1.7. This is a version of the Eckmann–Hilton
argument. One way to look at this is that if ⌣ is graded com-
mutative, then ◦̄ descends to the cohomology of d. Another
way to look at it is that on that cohomology, ⌣ becomes
graded commutative. Note that ⌣ does not have to do the
desuspension, it uses the arity as the degree.

Corollary 2.2.1.8. (𝖮̄, {−,−},d) is a DG Lie algebra,

d{𝜑,𝜓} − {𝜑,d𝜓} − (−1)|𝜓|{d𝜑,𝜓} = 0.

Proof. The previous lemma tells us that 𝖮̄ is in general not
a DG pre-Lie algebra, but when taking the commutator, the
right hand sides cancel out. □

Lemma 2.2.1.9. We have

(𝜑 ⌣ 𝜓)◦̄𝜒 − (𝜑◦̄𝜒) ⌣ 𝜓 − (−1)(|𝜑|+1)|𝜒|𝜑 ⌣ (𝜓 ◦̄𝜒) = 0.

Proof. Straightforward. Maybe one should number things
from right to left... □

The other way round is much less pleasant:
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Lemma 2.2.1.10. Given 𝜑 ∈ 𝖮(𝑝), 𝜓 ∈ 𝖮(𝑞), 𝜒 ∈ 𝖮(𝑟), define

𝐵2(𝜒, 𝜑, 𝜓) ≔
𝑟

∑

𝑖=1

𝑝+𝑟−1
∑

𝑗=𝑖+𝑝
(𝜒 ◦̄𝑖𝜑)◦̄𝑗𝜓.

Then

𝜒 ◦̄(𝜑 ⌣ 𝜓) − (−1)|𝜒||𝜓|(𝜒 ◦̄𝜑) ⌣ 𝜓 − (−1)|𝜒|𝜑 ⌣ (𝜒 ◦̄𝜓)
= ±d𝐵2(𝜒, 𝜑, 𝜓) ± 𝐵2(d𝜒, 𝜑, 𝜓)
± 𝐵2(𝜒,d𝜑,𝜓) ± 𝐵2(𝜒, 𝜑,d𝜓).

MSc Topic 2.2.1.11. Find the signs using my ◦̄𝑖 instead of
the usual ◦𝑖. There are less terms than one thinks. I am not
just not working them out here because I am too lazy but
because below I will discuss brace algebras and then there
will be a more conceptual ansatz for how to find them.

Remark 2.2.1.12. This is the one formula that Gerstenhaber
did not find in full generality but only for cocycles.

Corollary 2.2.1.13. We have

{𝜑 ⌣ 𝜓, 𝜒} − {𝜑, 𝜒} ⌣ 𝜓 − (−1)(|𝜑|+1)|𝜒|𝜑 ⌣ {𝜓, 𝜒} = ...

Remark 2.2.1.14. When it comes to ⌣, {−, 𝜒} thus behaves
like a graded derivation acting from the left.

Corollary 2.2.1.15. (𝖮,⌣,d) is a DG algebra.

Proof. That ⌣ is associative on the nose is straightforwardly
verified. The Leibniz rule follows from the previous corollary
by taking 𝜒 = 𝜇. □

Corollary 2.2.1.16. The cohomology

𝖦 ≔ kerd∕imd ∈ 𝐆𝐫(C)
of an operad with multiplication is a Gerstenhaber algebra,
that is,

⌣∶ 𝖦(𝑖)⊗ 𝖦(𝑗) → 𝖦(𝑖 + 𝑗)
turns 𝖦 into a graded commutative algebra,

{−,−}∶ 𝖦(𝑖)⊗ 𝖦(𝑗) → 𝖦(𝑖 + 𝑗 − 1)

turns 𝗌−1𝖦 into a graded Lie algebra, and we have

{𝜑 ⌣ 𝜓, 𝜒} = {𝜑, 𝜒} ⌣ 𝜓 + (−1)(|𝜑|+1)|𝜒|𝜑 ⌣ {𝜓, 𝜒}.
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2.2.2. Brace algebras. We have proved some lemmata and
then stated a corollary, but what was the theorem? It was
that the operad itself, not its cohomology, can be equipped
with a strange algebraic structure:

Theorem 2.2.2.1. An operad is naturally a brace algebra.

Definition 2.2.2.2. A brace algebra structure on 𝑋 is a se-
quence of 𝑛 + 1-ary operations

𝐵𝑛∶ 𝑋⋆𝑛+1 → 𝑋,

satisfying

𝐵𝑚(𝐵𝑛(𝑥, 𝑦1,… , 𝑦𝑛), 𝑧1,… , 𝑧𝑚)

=
∑

𝐵𝑖0(𝑥,… , 𝐵𝑖1(𝑦1,…),… , 𝐵𝑖𝑛(𝑦𝑛,…),…),

where all the … are filled with the 𝑧𝑖 in their original order.

Remark 2.2.2.3. Traditionally, one writes

𝐵𝑛(𝑥, 𝑦1,⋯ , 𝑦𝑛) = 𝑥{𝑦1,⋯ , 𝑦𝑛}.

Remark 2.2.2.4. Of course here signs come in if one works
in a graded context.

Example 2.2.2.5. When starting with an operad with multi-
plication, the 0-brace is the identity,

𝐵0 = id,

the pre-Lie product ◦̄ is the 1-brace

𝜑◦̄𝜓 = 𝐵1(𝜑,𝜓) = 𝜑{𝜓}

and 𝐵2 you have seen above, so the braces simply insert the
𝑛 inputs 𝑦1,… , 𝑦𝑛 in all ways into 𝑥. Note that for this the
multiplication is not yet needed, but if there is one, it defines
the cup product

𝜇{𝜑,𝜓}
and the coboundary map as before, and then one can derive
all the formulas from the brace relations.

If the braces are symmetric in the 𝑦𝑖 then they can be shown
to be determined by the pre-Lie structure, so symmetric
braces algberas are equivalent to pre-Lie algebras [14]. The
following is thus the logical nonsymmetric version of 2.1.2.3:
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Theorem 2.2.2.6 ([15]). Let 𝐻 =
⨁

𝑖≥0𝑋⊗𝑖 be the tensor
coalgebra on a vector space 𝑋 (the cofree conilpotent coal-
gebra on 𝑋 with the deconcatenation coproduct). Then the
brace algebra structures on 𝑋 correspond bijectively to right-
sided Hopf algebra structures on 𝐻 .

3. Little discs

3.1. More on Gerstenhaber algebras.

3.1.1. Poisson algebras.

3.1.2. Almost commutative algberas.

3.1.3. Lie–Rinehart algebras.

3.1.4. The recognition problem.

3.1.5. Deligne, Kontsevich & Co.

3.2. Littles discs and the Deligne conjecture.

3.2.1. 𝐸𝑑 .

3.2.2. 𝐻(𝐸𝑑).

3.2.3. 𝑑 = 1, 𝑑 = 2.
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